Study of Preparation, Characterization and Temperature-Programmed Reduction of NiO-ZnO Binary Materials

Article Preview

Abstract:

The NiO-ZnO binary materials had been prepared by co-precipitation method. The weight percent of nickel of NiO-ZnO materials were 5, 10 and 20; they were pretreated under air at temperature of 300, 500 and 700°C, respectively. The characterization of NiO-ZnO materials were the thermal gravity analysis(TGA), X-ray diffraction(XRD), N2 adsorption-desorption at 77K, scaning electron microscope(SEM) and temperature-programmed reduction(TPR). The results revealed that surface areas of NiO-ZnO materials order from large to small were 20NiZn(OH)x(66 m2·g-1) > 10NiZn(OH)x(34 m2·g-1) > 5NiZn(OH)x(9 m2·g-1) after being calcined at the temperature of 500°C. Further, NiO-ZnO materials had two main reductive peaks at 390-415°C and 560-657°C, respectively. In all NiO-ZnO materials, 20NiZn(OH)x-C500 material had the highest surface area and the best interaction between NiO and ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

515-520

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Xuping and C. Guoping: Thin Solid Films Vol. 298 (1997), p.53.

Google Scholar

[2] J. T. Richardson: J. Catal. Vol. 6 (1966), p.328.

Google Scholar

[3] J. Xu, Q. Pan and Y. Shun: Sens. Actuator B Vol. 66 (2000), p.277.

Google Scholar

[4] Y. Chen, D. Bagnall and T. Yao: Mater. Sci. Eng. B Vol. 75 (2000), p.190.

Google Scholar

[5] K. Westermark, H. Rensmo, T.A.C. Lees, J.G. Vos and H.T. Siegbahn: J. Phys. Chem. B Vol. 106 (2002), p.10108.

Google Scholar

[6] K.G. Azzam, I.V. Babich, K. Seshan and L. Lefferts: J. Catal. Vol. 251 (2007), p.153.

Google Scholar

[7] T.L. Lai, C.C. Lee, G.L. Huang, Y.Y. Shu and C.B. Wang: Appl. Catal. B: Environ. Vol. 78 (2008), p.151.

Google Scholar

[8] K. Naeem and F. Ouyang: Physica B Vol. 405 (2010), p.221.

Google Scholar

[9] P. Djinovic, J. Batista and A. Pintar: Catal. Today Vol. 147S (2009), p. S191.

Google Scholar

[10] J. Kugai, S. Velu and C. Song: Catal. Lett. Vol. 101 (2005), p.255.

Google Scholar

[11] T. Shido and Y. Iwasawa: J. Catal. Vol. 129 (1991), p.343.

Google Scholar

[12] F. Xu, P. Zhang, A. Navrotsky, Z.Y. Yuan, T.Z. Ren, M. Halasa and B.L. Su: Chem. Mater. Vol. 19 (2007), p.5680.

Google Scholar

[13] K.C. Barick, S. Singh, M. Aslam and D. Bahadur: Micro. Meso. Mater. Vol. 134 (2010), p.195.

Google Scholar

[14] J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu and Y. Zhang: Mater. Res. Bull. Vol. 46 (2011), p.1207.

Google Scholar

[15] C. L. Carnes, J. Stipp and K. J. Klabunde: Langmuir Vol. 18 (2002), p.1352.

Google Scholar

[16] Z. Jia, L. Yue, Y. Zheng and Z. Xu: Mater. Chem. Phys. Vol. 107 (2008), p.137.

Google Scholar

[17] S. Kant and A. Kumar: Adv. Mat. Lett. Vol. 3(4) (2012), p.350.

Google Scholar