Study on the Local Structure of PAN-Based Carbon Fiber Using Radial Distribution Function Based on XRD

Article Preview

Abstract:

The local structure evolution of polyacrylonitrile (PAN) fibers during pre-oxidation and carbonization was studied using X-ray diffraction (XRD) and radial distribution function (RDF). The nearest inter-chains distance of PAN is 6.88 Å, which is close to the diameter of the “rigid rod” model proposed by Warner. The third neighbor distances of carbon fibers are greater than that of graphite, indicating the planar six-member rings are absent in the carbon fibers from 500 to 1250°C. The structure of fibers transforms from long-range order to long-range disorder during the pre-oxidation process, then transforms from short-range order to long-range order during the carbonization process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

614-619

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Bajaj: Bull Mater Sci Vol. 18 (1995), P. 711.

Google Scholar

[2] S. Kimura, T. Kato, T. Hyodo, Y. Shimizu and M. Egashira: J Magn Magn Mater Vol. 312 (2007), P. 181.

Google Scholar

[3] Q.L. Ling, J.Z. Sun, Q. Zhao and Q.Y. Zhou: Mat Sci Eng B Vol. 162 (2009), P. 162.

Google Scholar

[4] L.C. Folgueras, E.L. Nohara, R. Faez and M.C. Rezende: Mater Res Vol. 10 (2007), P. 95.

Google Scholar

[5] W. Thongruang, C.M. Balik and R.J.J. Kspontak: J Appl Polym Sci Vol. 40 (2002), P. 1013.

Google Scholar

[6] R. Bacon and A.F. Silvayyi: Carbon Vol. 9 (1971), P. 321.

Google Scholar

[7] C. Brasquet, B. Rousseau, H. Strade-Szwaekopf and P.L. Cloirec: Carbon Vol. 3 (2000), P. 407.

Google Scholar

[8] P. Bajaj, T.V. Streekumar and K.J. Sen: J Appl Polym Sci Vol. 86 (2002), P. 773.

Google Scholar

[9] W. X. Zhang, J. Liu and G. Wu: Carbon Vol. 41 (2003), P. 2805.

Google Scholar

[10] M.X. Ji, C.G. Wang, Y.J. Bai, M.J. Yu and Y.X. Wang: Polym Bull Vol. 51(2006), P. 1255.

Google Scholar

[11] A.T. Kalashnik, T.N. Smirnova, O.P. Chernove and V.V. Kozlov: Polym Sci Vol. 52 (2010), P. 1233.

Google Scholar

[12] W. Li, D.H. Long, M. Jin, W.M. Qiao, L.C. Ling, I. Mochida and S.H. Yoon: J Mater Sci Vol. 47 (2012), P. 919.

Google Scholar

[13] K. Mukesh, A.S. Jain and A.S. Abhiraman: J Mater Sci Vol. 22 (1987), P. 278.

Google Scholar

[14] K. Mukesh, M. Jain, P. Balasubramanian, P. Desai and A.S. Abhiraman: J Mater Sci Vol. 22 (1987), P. 301.

Google Scholar

[15] K. Mukesh, M. Jain, P. Balasubramanian, P. Desai and A.S. Abhiraman, J Mater Sci Vol. 22 (1987), P. 3864.

Google Scholar

[16] F. Li and J.S. Lannin: Phys Rev Lett Vol. 65 (1990), P. (1905).

Google Scholar

[17] A. Szczygielska, A. Burian, S. Duber, J.C. Dore and V.J. Honkimaki: J Alloys Compd Vol. 328 (2001), P. 231.

DOI: 10.1016/s0925-8388(01)01694-2

Google Scholar

[18] A. Kumar, R.F. Lobo and N.J. Wagner: Carbon Vol. 43 (2005), P. 3099.

Google Scholar

[19] R.Z. Hu, T. Egami, F. Li and J.S. Lannin: Phys Rev B Vol. 45 (1992), P. 9517.

Google Scholar

[20] D.M. Nicholas, J.R. Marjoram and O.C. Whittaker: J App Crys Vol. 5 (1972), P. 262.

Google Scholar

[21] V. Petkov, R.G. Difrancesco, S.J.L. Billnge, M. Acharya and H.C. Foley: Philos Mag B Vol. 79 (1999), P. 1519.

Google Scholar

[22] S.T. Li: X-ray diffraction methods ( Metallurgical Industry Press, Beijing 2000).

Google Scholar

[23] S.B. Warner, D.R. Uhlmann and J.L.H. Peebles: J Mater Sci Vol. 14 (1979), P. 1893.

Google Scholar