Preparation and Visible Light Activity of Co-Doped Mesoporous TiO2 Photocatalyst

Article Preview

Abstract:

Co-doped mesoporous TiO2 photocatalyst was successfully prepared by an ionic liquid modified sol-gel method from TBOT and Co(NO3)2·6H2O. The Co-doped mesoporous TiO2 samples were characterized by TG-DSC, XRD, XPS, BET, UV-Vis and TEM, respectively. TG-DSC and XRD results showed that the mesoporous TiO2 samples exhibited high thermal stability, and the samples calcined at 650 oC indicated well-crystallized anatase structure. XPS spectra proved the Co3O4 structure of Co in Co-doped mesoporous samples. Large specific surface area was shown from the BET analysis, and the largest specific surface area was obtained when the Co-doping amount was 0.3%. UV-Vis DRS spectra showed that all of the samples exhibited obvious absorption in the visible light range. Photocatalytic activity of the samples was evaluated by photodegradation of MB under visible light (λ>420 nm). Co-doped mesoporous TiO2 exhibited high photocatalytic activity for MB oxidation, and the 0.3% Co/TiO2 sample showed the highest visible light activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

690-695

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and Toshiya Watanabe: Nature. Vol. 388(1997), p.431.

DOI: 10.1038/41233

Google Scholar

[2] X. Chen and S. S. Mao: Chem Rev. Vol. 107(2007), p.2891.

Google Scholar

[3] I. P. Parkin and R. G. Palgrave: J. Mater. Chem. Vol. 15(2005), p.1689.

Google Scholar

[4] R. Pärnaa, U. Joosta, E. Nõmmistea, T. Käämbrea, A. Kikasa, I. Kuusika, M. Hirsimäki, I. Kinka, and V. Kisanda: Appl. Surf. Sci. Vol. 257 (2011), p.6897.

Google Scholar

[5] S. F. Hu, H. Y. Wang, J. M. Cao, J. S. Liu, B. Q. Fang, M. B. Zheng, G. B. Ji, F. Zhang and Z. J. Yang: Mater. Lett. Vol. 62(2008), p.2954.

Google Scholar

[6] C. Su, B.Y. Hong and C. M. Tseng: Catal. Today. Vol. 96(2004), p.119.

Google Scholar

[7] S. Kirit and S. Dimple: J. Cryst. Growth. Vol. 352(2012), p.224.

Google Scholar

[8] Q. J. Yang, H. Choi and D. D. Dionysiou: Appl. Catal., B. Vol. 74(2007), p.170.

Google Scholar

[9] Y. J. Sun, T. Egawa, L. Y. Zhang and X. Yao: Jpn. J. Appl. Phys. Vol. 41(2002), p.1389.

Google Scholar

[10] Z. Song, J. Hrbek and R. Osgood: Nano Lett. Vol. 5(2005), p.1327.

Google Scholar

[11] Q. J. Yang, H. Choi, S. R. Al-Abed and D. D. Dionysiou: Appl. Catal., B. Vol. 88(2009) p.462.

Google Scholar

[12] A. C. Lee, R. H. Lin, C. Y. Yang, M. H. Lin and W. Y. Wang: Mater. Chem. Phys. Vol. 109(2008), p.275.

Google Scholar

[13] A. Kudo, R Niishiro, A. Iwase and H. Kato: Chem. Phys. Vol. 339(2007), p.104.

Google Scholar

[14] Y. Gao, B. H. Chen, H. L. Li and Y. X. Ma: Mater. Chem. Phys. Vol. 80(2003), p.348.

Google Scholar