Effects of Surface Roughness and Chemical Species on Hydrophilicity of Anodized Film on Ti-6Al-4V Formed at a Low Current Density

Article Preview

Abstract:

Anodization of Ti-6Al-4V is crucial for dental implants because it promotes the roughness, chemical species and hydrophilicity of the surface that leads to its biocompatibility. The anodized film was prepared by the galvanostatic method at a low current density in either 1 M H3PO4 or 1 M NaOH as the electrolyte. The as-anodized film showed a significant decrease in the water contact angle, likely to be due to an increased surface roughness (as revealed by scanning electron and atomic force microcopy) and change in the surface species (as revealed by X-ray photoelectron spectroscopy, XPS). XPS analyses confirmed that the Ti2p spectra scarcely changed while the O1s spectra significantly changed due to Ti-OH bonding. Moreover, the O/Ti ratio of the as-anodized film was increased. The results suggest that anodization by the galvanostatic method at a low current density in 1 M H3PO4 or 1 M NaOH could enhance the surface roughness and chemical surface species, and that both are likely to be important factors for enhancing the hydrophilicity of the anodized films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

774-779

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Cui, H. M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo and T. Nakamura: Dent Mater Vol. 25 (2009), p.80.

Google Scholar

[2] H. -H. Huang and T. -H. Lee: Dent Mater Vol. 21 (2005), p.749.

Google Scholar

[3] Y. H Jeong, K. Lee, H. C. Choe, Y. M. Ko, and W. A. Brantley: Thin Solid Films Vol. 517 (2009), p.5365.

Google Scholar

[4] T. Sonoda, and M. Kato: Thin Solid Films Vol. 303 (1997), p.196.

Google Scholar

[5] F. Guillemot, M. C. Porte, C. Labrugere and C. Baquey: J Colloid Interf Sci Vol. 255 (2002), p.75.

Google Scholar

[6] B. C. Yang, M. Uchida, H. M. Kim, X. D. Zhang and T. Kokubo: Biomaterials Vol. 25 (2004), p.1003.

Google Scholar

[7] E. Byon, S. Moon, S. B. Cho, C. Y. Jeong, Y. Jeong and Y. T. Sul: Surf Coat Tech Vol. 200 (2005), p.1018.

Google Scholar

[8] Y. T. Sul, C. B. Johansson, Y. Jeong and T. Albrektsson: Med Eng Phys Vol. 23 (2001), p.329.

Google Scholar

[9] N. K. Kuromoto, R. A. Simao and G. A. Soares: Mater Charact Vol. 58 (2007), p.114.

Google Scholar

[10] B. S. Kang, Y. T. Sul, S. J. Oh, H. J. Lee and T. Albrektsson: Acta Biomater Vol. 5 (2009), p.2222.

Google Scholar

[11] Y. Oshida: Bioscience and Bioengineering of Titanium Materials, chapter, 4, Oxford (2007).

Google Scholar

[12] R. Narayanan and S. K Seshadri: Corros Sci Vol. 49 (2007), p.542.

Google Scholar

[13] H. J. Song, S. H. Park, S. H. Jeong and Y. J. Park: J Mater Process Tech Vol. 209 (2009), p.864.

Google Scholar

[14] C. N. Elias, Y. Oshida, J. H. C. Lima and C. A. Muller: J Mech Behav Biomed Mater Vol. 1 (2008), p.234.

Google Scholar

[15] M. A. M. Ibrahim, D. Pongkao and M. Yoshimura: J Solid State Electr Vol. 6 (2002), p.341.

Google Scholar

[16] T. H. Teh, A. Berkani, S. Mato, P. Skeldon, G. E. Thompson, H. Habazaki and K. Shimizu: Corros Sci Vol. 45 (2003), p.2757.

DOI: 10.1016/s0010-938x(03)00101-x

Google Scholar

[17] Z. B. Xia, H. Nanjo, H. Tetsuka, T. Ebina, M. Izumisawa, M. Fujimura and J. Onagawa: Electrochem Commun Vol. 9 (2007), p.850.

DOI: 10.1016/j.elecom.2006.11.027

Google Scholar

[18] T. Ohtsuka and N. Nomura: Corros Sci Vol. 39 (1997), p.1253.

Google Scholar

[19] Y. T. Sul, C. B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg and T. Albrektsson: Biomaterials Vol. 23 (2002), p.491.

DOI: 10.1016/s0142-9612(01)00131-4

Google Scholar

[20] M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, Cebelcor Publishing, Houston (1974).

Google Scholar