A Kw-Scale Integrated System for On-Demand Hydrogen Generation Using NaBH4 Solution and a Low-Cost Catalyst

Article Preview

Abstract:

Among several hydrogen storage methods for application in fuel cells, on-board hydrogen generation using sodium borohydride (NaBH4; a chemical hydride) for application in proton exchange membrane (PEM) fuel cells can be considered as a low-weight method for portable applications. In this paper, an integrated continuous-flow system for on-demand hydrogen generation from the hydrolysis reaction of the NaBH4 solution in the presence of a low-cost catalyst is proposed. By using the prepared non-noble Co(NO3)2 on porous alpha-alumina support, as catalyst, the cost of the catalyst has cut down considerably. Up to 15 SLPM high-purity hydrogen gas is expected to be generated by this system to supply to a 1 kW-scale proton exchange membrane (PEM) fuel cell stack (H2-air, 40% efficiency).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

795-800

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Ogden, T.G. Kreutz and M.M. Steinbugler‏: Fuel Cells Bull. Vol. 16 (2000), p.5.

Google Scholar

[2] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben: Nature Vol. 386 (1997), p.377.

DOI: 10.1038/386377a0

Google Scholar

[3] R. Chahine and T.K. Bose: Int. J. Hydrogen Energy Vol. 19 (1994), p.161.

Google Scholar

[4] A.C. Dillon, K.E.H. Gilbert, J.L. Alleman, T. Gennett, K.M. Jones, P.A. Parilla and M.J. Heben, in: Proceedings of the 2001 DOE Hydrogen Program Review NREL/CP-570-30535 (2001).

Google Scholar

[5] Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith and R.E. Smalley: Appl. Phys. Lett. Vol. 74 (1999), p.2307.

DOI: 10.1063/1.123833

Google Scholar

[6] H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra and E.K. Hyde: J. Am. Chem. Soc. Vol. 75 (1953), p.215.

Google Scholar

[7] J.P. DiPietro and E.G. Skolnik, in: Proceedings of the 2000 DOE Hydrogen Program Review NREL/CP-570-28890 (2000).

Google Scholar

[8] A.W. McClaine, R.W. Breault, C. Larsen, R. Konduri, J. Rolfe, F. Becker and G. Miskolczy, in: Proceedings of the 2000 US DOE Hydrogen Program Review NREL/CP-570-28890, (2000).

DOI: 10.1007/0-306-46922-7_11

Google Scholar

[9] B. Bogdanovic', R.A. Brand, A. Marjanovic', M. Schwickardi and J. Tölle: J. Alloys Compd. Vol. 302 (2000), p.36.

Google Scholar

[10] H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra and E.K. Hyde: J. Am. Chem. Soc. Vol. 75 (1953), p.215.

Google Scholar

[11] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo and M. Binder: Int. J. Hydrogen Energy Vol. 25 (2000), p.969.

Google Scholar

[12] J.H. Wee, K.Y. Lee and S.H. Kim: Fuel Proc. Tech. Vol. 87 (2006), p.811.

Google Scholar

[13] W. Ye, H. Zhang, D. Xu, L. Ma and B. Yi: J. Power Sources Vol. 164 (2007), p.544.

Google Scholar

[14] S.S. Muir and X. Yao: Int. J. Hydrogen Energy Vol. 36 (2011), p.5983.

Google Scholar

[15] Y. Kojima, K.I. Suzuki, K. Fukumoto, Y. Kawai, M. Kimbara, H. Nakanishi and S. Matsumoto: J. Power Sources Vol. 125 (2004), p.22.

DOI: 10.1016/s0378-7753(03)00827-9

Google Scholar

[16] S.U. Jeong, R.K. Kim, E.A. Cho, H.J. Kim, S.W. Nam, I.H. Oh, S.A. Hong and S.H. Kim: J. Power Sources Vol. 144 (2005), p.129.

Google Scholar

[17] S.J. Kim, J. Lee, K.Y. Kong, C.R. Jung, I. Min, S.Y. Lee, H.J. Kim, S.W. Nam and T.H. Lim: J. Power Sources Vol. 170 (2007), p.412.

Google Scholar

[18] J. Zhang, Y. Zheng, J.P. Gore and T.S. Fisher: J. Power Sources Vol. 165 (2007), p.844.

Google Scholar

[19] R. Oronzio, R. Oronzio, G. Monteleone, A. Pozio, M. De Francesco and S. Galli: Int. J. Hydrogen Energy Vol. 34 (2009), p.4555.

DOI: 10.1016/j.ijhydene.2009.01.056

Google Scholar

[20] S. Galli, M. De Francesco, G. Monteleone, R. Oronzio and A. Pozio: Int. J. Hydrogen Energy Vol. 35 (2010), p.7344.

DOI: 10.1016/j.ijhydene.2010.03.144

Google Scholar

[21] K. Kim, T. Kim, K. Lee and S. Kwon: J. Power Sources Vol. 196 (2011), p.9069.

Google Scholar

[22] B.H. Liu and Q. Li: Int. J. Hydrogen Energy Vol. 33 (2008), p.7385.

Google Scholar

[23] R. Aiello, J.H. Sharp and M.A. Matthews: Int. J. Hydrogen Energy Vol. 24 (1999), p.1123.

Google Scholar

[24] E.Y. Marrero-Alfonso, J.R. Gray, T.A. Davis and M.A. Matthews: Int. J. Hydrogen Energy Vol. 32 (2007), p.4717.

Google Scholar

[25] P.P. Prosini and P. Gislon: J. Power Sources Vol. 161 (2006), p.290.

Google Scholar

[26] J.H. Kim, K.H. Choi and Y.S. Choi: Int. J. Hydrogen Energy Vol. 35 (2010), p.4015.

Google Scholar