Flow and Heat Transfer of Nanofluids near a Rotating Disk

Article Preview

Abstract:

The study of boundary layer flow and heat transfer near a rotating disk with nanofluids is investigated numerically. Three types of nanoparticles, namely, silver Ag, copper Cu and alumina Al2O3 with water as the base fluid are considered. The results show that the momentum boundary layer thicknesses shortens as the nanoparticle volume fraction increases, whereas thermal boundary layer thickness elongates for increasing ϕ. It is found that the reduced skin-friction coefficients and heat transfer rateat the rotating surface increase linearly with nanoparticle volume fractionϕ. The surface heat transfer rate for Cu-water nanofluid is higher than those of the otherswhen ϕ>0.02, even though the nanoparticle Ag has higher thermal conductivity than that of copper Cu.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

859-865

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.U.S. Choi,: Enhancing thermal conductivity of fluids with nanoparticles: edited by D.A. Siginer and H.P. Wang, Developments and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol. 66 ASME, NY (1995).

Google Scholar

[2] M.S.K. Das, S.U.S. Choi, W. Yu and T. Pradeep: Nanofluids: Science and Technology, Wiley, New Jersey, (2007).

Google Scholar

[3] X.Q. Wang and A.S. Mujumdar: Int. J. Thermal Sci. Vol. 46 (2007), pp.1-19.

Google Scholar

[4] H.A. Mohammed, A.A. Al-Aswadi N.H. Shualb and R. Saidur: Renew. Sustainable Energy Rev. Vol. 15 (2011), pp.2921-2939.

Google Scholar

[5] J. Buongiorno: ASME J. Heat Transfer Vol. 128 (2006), pp.240-250.

Google Scholar

[6] O. Manca, Y. Jaluria and D. Poulikakos: Adv. Mech. Eng. (2010), Article ID 380826.

Google Scholar

[7] K.V. Wong and O.D. Leon: Adv. Mech. Eng. (2010), Article ID 519659.

Google Scholar

[8] L.P. Zhou, B.X. Wang, X.F. Peng, X.Z. Du and Y.P. Yang: Adv. Mech. Eng. (2010), Article ID 172085.

Google Scholar

[9] B. Kolade, K.E. Goodson and J.K. Eaton: ASME J. Heat Transfer Vol. 131 (2009), DOI052402-1-8.

Google Scholar

[10] Th. von Karman: Z Angew. Math. Mech. Vo1. (4) (1921) p.233–252.

Google Scholar

[11] E.M. Sparrow and J.L. Gregg: Journal of Transactions to ASME, Nov. (1960), pp.294-302.

Google Scholar

[12] M.G. Rogers and G.N. Lance: J. Fluid Mech. Vol. 7 (1960), pp.617-631.

Google Scholar

[13] I.V. Shevchuk, in: Convective Heat and Mass Transfer in Rotating Disk Systems, Berlin, Heidelberg, Springer-Verlag (2009).

Google Scholar

[14] H.C. Brinkman: J. Chem. Phys. Vol. 20 (1952), pp.571-581.

Google Scholar

[15] N.A. Yacob, A. Ishak and I. Pop:, Int. J. Thermal Sci. Vol. 50 (2011), pp.133-139.

Google Scholar

[16] E. Abu-Nada, Z. Masoud and A. Hijazi: Int. Comm. Heat Mass Transfer Vol. 35 (2008), pp.657-665.

DOI: 10.1016/j.icheatmasstransfer.2007.11.004

Google Scholar

[17] E. Abu-Nada: Int. J. Heat Fluid Flow Vol. 30 (2009), pp.679-690.

Google Scholar

[18] K. Khanafer, K. Vafai and M. Lightstone: Int. J. Heat Mass Transfer Vol. 46 (2003), pp.3639-3653.

DOI: 10.1016/s0017-9310(03)00156-x

Google Scholar

[19] M. Shahi, A. H. Mahmoudi and F. Talebi: Int. Comm. Heat Mass Transfer Vol. 37 (2010), p.201–213.

Google Scholar

[20] M. Muthtamilselvan, P. Kandaswamy and J. Lee: Commun. Nonlinear Sci. Numer. Simulat. Vol. 15 (2010), pp.1501-1510.

Google Scholar

[21] E. Abu-Nada: Int. J. Heat Fluid Flow Vol. 29 (2008), pp.242-249.

Google Scholar

[22] E. Abu-Nada, Z. Masoud, H. F. Oztop and A. Campo: Int. J. Thermal Sci. Vol. 49 (2010), pp.479-491.

Google Scholar

[23] N.A. Yacob, A. Ishak, I. Pop and K. Vajravelu: Nanoscale Res. Lett. Vol. 6 (2011), pp.314-320.

Google Scholar