The Influence of Ion Energy Distribution for Multiple Frequencies Driven

Article Preview

Abstract:

The voltages, resonant waves and frequencies how to influence on the ion energy distributions (IEDs) from multiple frequencies driven in capacitive discharges, it is important to analyze these phenomenon and mechanism in order to control the microelectronic processes of integrated circuit and develop the base theories of plasma physics. We focused on the function of the ion energy distributions under high and low frequencies (dual frequency) drive in capacitive discharges, we derived a model of computation of the multiple frequencies driven IEDs from analyzing theories. The model can analyze and predict the IEDs under different high and low frequencies driven, the results from the model are in good agreement with these important data from public publish.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

947-953

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Kawamura, V. Vahedi, M. A. Lieberman, and C. K. Birdsall, Plasma Sources Sci. Technol. 8, R45 (1999).

Google Scholar

[2] P. Benoit-Cattin and L. -C. Bernard, J. Appl. Phys. 39, 5723 (1968).

Google Scholar

[3] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd ed. _Wiley, New York, (2005), Chap. 11.

Google Scholar

[4] V. Georgieva, A. Bogaerts, and R. Gijbels, Phys. Rev. E 69, 026406 (2004).

Google Scholar

[5] J. K. Lee, O. V. Manuilenko, N. Yu Babaeva, H. C. Kim, and J. W. Shon, Plasma Sources Sci. Technol. 14, 89 (2005).

Google Scholar

[6] Z. Q. Guan, Z. L. Dai, and Y. N. Wang, Phys. Plasmas 12, 123502 (2005).

Google Scholar

[7] L. H. Wang, Z. L. Dai, and Y. N. Wang, Chin. Phys. Lett. 23, 668 (2006).

Google Scholar

[8] H. C. Kim and J. K. Lee, J. Vac. Sci. Technol. A 23, 651 (2005).

Google Scholar

[9] M. Olevanov, O. Proshina, T. Rakhimova, and D. Voloshin, Phys. Rev. E 78, 026404 (2008).

Google Scholar

[10] A. C. F. Wu, M. A. Lieberman, and J. P. Verboncoeur, J. Appl. Phys. 101, 056105 (2007).

Google Scholar

[11] T. V. Rakhimova, O. V. Braginsky, V. V. Ivanov, A. S. Kovalev, D. V. Lopaev, Y. A. Mankelevich, M. A. Olevanov, O. V. Proshina, A. T. Rakhimov, A. N. Vasilieva, and D. G. Voloshin, IEEE Trans. Plasma Sci. 35, 1229 (2007).

DOI: 10.1109/tps.2007.905201

Google Scholar

[12] J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, H. C. Kim, and J. W. Shon, Plasma Sources Sci. Technol. 14, 89 (2005).

Google Scholar

[13] W. C. Chen, X. M. Zhu, S. Zhang, and Y. K. Pu, Appl. Phys. Lett. 94, 211503 (2009).

Google Scholar

[14] D. Israel and K. -U. Riemann, J. Appl. Phys. 99, 093303 (2006).

Google Scholar

[15] Y. Wang, M. A. Lieberman, A. C. F. Wu, and J. P. Verboncoeur, J. Appl. Phys. 110, 033307 (2011).

Google Scholar