Structural and Optical Characterization of Zinc Telluride Thin Films

Article Preview

Abstract:

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3 lines-m2 and 1.639×1015 lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-262

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nam, J. Rhee, B.O., K. Lee, Y. D. Choi, J. Crystal Growth, 180, 47 (1997).

Google Scholar

[2] Manish Jain, Vitaliy V. Godlevsky, Jeffrey J. Derby and James, R. Chelikowsky, Phys. Review B, 65, 35212 (2001).

Google Scholar

[3] H. Zhou, A. Zebib, S. Trivedi, W.M.B. Duval, J. Crystal Growth, 167(1996)813.

Google Scholar

[4] T. Ota, K. Takashi, Solid State Electronics, 16, 1089 (1973).

Google Scholar

[5] C. X. Shan, X. W. Fan, J. Y. Zhang, Z. Z. Zhang, X. H. Wang, J. G. Ma, et al. J. Vac Sci Technol 20, 1886–90 (2002).

Google Scholar

[6] Q. Guo, Y. Kume, Y. Fukuhara, T. Tanaka, M. Nishio, H. Ogawa, et al. Solid State Commun 141, 188–91 (2007).

Google Scholar

[7] M. Schall, M. Walther, P. Uhd Epsen, Phys. Rev. B 64, 94301 (2001).

Google Scholar

[8] U. Pal, S. Saha, B. K. Samantaray, H. D. Banerjee and A. K. Chaudhuri, phys. stat. sol. (a) 111, 515 (1989).

Google Scholar

[9] T. Mahalingam, V. S. John, G. Ravi, P. J. Sebastian, Cryst. Res. Technol., 37, 329 (2002).

Google Scholar

[10] A. K. S Aqili, Z. Ali, A. Mazsood, Appl. Surf. Sci., 167 1(2000).

Google Scholar

[11] M. R. H Khan, J. Phys D Appl. Phys., 27, 2190 (1994).

Google Scholar

[12] W. I. Tao, M. Jurkovic, I. N. Wang, Appl. Phys. Lett, 64, 1848 (1994).

Google Scholar

[13] J. D. Merchan, M. Cocivera, J. Electrochen. Soc., 142, 4054 (1996).

Google Scholar

[14] K. Wolf, H. Stanzl, A. Naumov, H. P. Wagner, W. Kuhn, B. Hanm, , W. Gebhardt, J. Cryst. Growth., 138, 412 (1994).

Google Scholar

[15] Y. Tokumitsu, A. Kawabuchi, H. Kitayama, T. Imura., , Y. Osaka, , F. Nishiyama, Jpn. J. Appl. Phys., 29, 1039 (1990).

DOI: 10.1143/jjap.29.1039

Google Scholar

[16] C. Königtein, M. Neumann-Spallart, J. Electrochem. Soc., 145, 337 (1998).

Google Scholar

[17] R. Amutha, A. Subbarayan, and R. Sathyamoorthy, Cryst. Res. Technol. 41(12), 1174 – 1179 (2006).

Google Scholar

[18] JCPDS International centre for Diffraction Data, USA, (1997) Card No. 15-0746.

Google Scholar

[19] K. Gowrish, Kasturi V Rao, Bangera, G. K. Shivakumar, Vacuum, 83, 1485–1488 (2009).

Google Scholar

[20] B. D. Cullity, in Elements of X-Ray diffraction, (Addison- Weskey Publishing Company, Inc., London, 1978).

Google Scholar

[21] R. Bhargava (cd), Properties of Wide Bandgap II-IV Semiconductors, Inspec. London (1997).

Google Scholar

[22] J. I. Pankove, Optical process in semiconductors (Butterworth, London, U.K., 1971) Chapter 11.

Google Scholar

[23] M. A. Al-Sabayleh, Australian Journal of Basic and Applied Sciences, 3(2), 669 (2009).

Google Scholar

[24] J. Shadia. I. khmayies, N. Riyad, Ahmad-Bitar, American Journal of Applied Sciences 5 (9), 1141 (2008).

Google Scholar

[25] G. I. Rusu, P. Prepeliţa, R. S. Rusu, N. Apetroaie, G. Oniciuc, A. Amariei, Journal of Optoelectronics and Advanced materials 8(3) 922 (2006).

Google Scholar

[26] Ziaul Raza Khan, M. Zulfequar, Mohd. Shahid Khan, Chalcogenide Letters 7(6), 431 (2010).

Google Scholar

[27] K. Sarmah, R. Sarma, H. L. Das, Chalcogenide Letters 5(8), 153 (2008).

Google Scholar

[28] A. Mondal, S. Chaudhuri, A. K. Pal, Optical Properties of ZnTe Films, Appl. Phys. A43, 81-84 (1987).

Google Scholar

[29] M. G. Syed Basheer Ahamed, V. S. Nagarethinam, A. Thayumanavan, K. R. Murali, C. Sanjeeviraja, M. Jayachandran, J. Mater Sci: Mater Electron 21, 1229–1234 (2010).

DOI: 10.1007/s10854-009-0051-9

Google Scholar

[30] M. М. Kolesnyk, D. I. Kurbatov, А. S. Opanasyuk, V. B. Loboda, Semiconductor Physics, Quantum Electronics & Optoelectronics., 12(1), 35-41 (2009).

Google Scholar

[31] A.G. Kornitskii, N.M. Kondaurov and P.S. Kireev, Russian Physics Journal, 18, 342-346 (1975).

Google Scholar

[32] K. L. Chopra, Thin Film Phenomena, McGraw- Hill, New York (1969).

Google Scholar

[33] O. Heavens, Optical Properties of Thin Solid Films, Dover, New York (1965).

Google Scholar

[34] N. Leiderer, G. Jahn, M. Silberbaer, W. Kuhn, H. P. Wagner, W. Limmer, W. Gebhardt, J. Appl. Phys. 70, 394, (1991).

Google Scholar

[35] N.R. Kulish, M.P. Lisitsa, A.F. Maznichenko and B.M. Bulakh, Sov. Phys. Semicond., 12, 585, (1978).

Google Scholar

[36] U. S. Sajeev, C. Joseph Mathai, S. Saravan, Rajeev R Ashokan, S Vankatachalam. Bull. Mater. Sci. 29, 159 (2006).

Google Scholar

[37] M. Tariq Bhatti et al., Journal of Research(Science), 15, 369-375, (2004).

Google Scholar