Effect of Independently Tunable Electron Layer Density on Wigner Crystallization in Electron-Hole Quantum Bilayers

Article Preview

Abstract:

A unique evidence of crystalline phase, known as Wigner crystal (WC), is explored in Electron-Hole quantum bilayers (EHBL) by tuning electron layer density independently at zero-temperature and zero-magnetic field. The quantum or dynamical version of Singwi, Tosi, Land and Sjölander (qSTLS) approach is used for obtaining the static density susceptibility. The static density susceptibility plays very important role for exploration of WC phase by showing a divergent behavior at finite wavevector, corresponds to the reciprocal lattice wavevector, during the phase transition from liquid state to WC ground-state. A comparison of present results with a recent results of dependently tunable EHBL system [Phys. Rev. B 66, 205316 (2002)] shows that the onset of Wigner crystallization now occurs at sufficiently lower interlayer spacing by tuning the electron layer density and keeping hole layer density fixed. Further, the prediction of WC phase gets support from the structure factor which exhibits a strong peak near the phase transition point.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-288

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Wigner, On the interaction of electrons in metals, Phys. Rev. 46 (1934) 1002-1011.

Google Scholar

[2] D.M. Ceperley and B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980) 566-569.

DOI: 10.1103/physrevlett.45.566

Google Scholar

[3] B. Tanatar and D.M. Ceperley, Ground state of the two-dimensional electron gas, Phys. Rev. B 39 (1989) 5005-5016.

DOI: 10.1103/physrevb.39.5005

Google Scholar

[4] R.K. Moudgil, P.K. Ahluwalia, and K.N. Pathak, Static and dynamic correlation functions of a two-dimensional quantum electron fluid, Phys. Rev. B 52 (1995) 11945-11957.

DOI: 10.1103/physrevb.52.11945

Google Scholar

[5] C.C. Grimes and G. Adams, Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons, Phys. Rev. Lett. 42 (1979) 795-798.

DOI: 10.1103/physrevlett.42.795

Google Scholar

[6] L. Świerkowski, D. Neilson, and J. Szymański, Enhancement of Wigner crystallization in multiple-quantum-well structures, Phys. Rev. Lett. 67 (1991) 240-243.

DOI: 10.1103/physrevlett.67.240

Google Scholar

[7] J. Szymański, L. Świerkowski, and D. Neilson, Correlations in coupled layers of electrons and holes, Phys. Rev. B 50 (1994) 11002-11007.

DOI: 10.1103/physrevb.50.11002

Google Scholar

[8] B. Tanatar and B. Davoudi, Dynamic correlations in double-layer electron systems, Phys. Rev. B 63 (2001) 165328-1-165328-10.

DOI: 10.1103/physrevb.63.165328

Google Scholar

[9] R.K. Moudgil, G. Senatore, and L.K. Saini, Dynamic correlations in symmetric electron-electron and electron-hole bilayers, Phys. Rev. B 66 (2002) 205316-1-205316-10.

DOI: 10.1103/physrevb.66.205316

Google Scholar

[10] R.K. Moudgil, Coupled electron–hole quantum well structure: mass asymmetry and finite width effects, J. Phys. Condens. Matter. 18 (2006) 1285-1301.

DOI: 10.1088/0953-8984/18/4/014

Google Scholar

[11] V.M. Pudalov, M. D'Iorio, S.V. Kravchenko, and J.W. Campbell, Zero-magnetic-field collective insulator phase in a dilute 2D electron system, Phys. Rev. Lett. 70 (1993) 1866-1869.

DOI: 10.1103/physrevlett.70.1866

Google Scholar

[12] L.V. Butov, A. Zrenner, G. Abstreiter, G. Bohm, and G. Weimann, Condensation of indirect excitons in coupled AlAs/GaAs quantum wells, Phys. Rev. Lett. 73 (1994) 304-307.

DOI: 10.1103/physrevlett.73.304

Google Scholar

[13] J.P. Cheng, J. Kono, B.D. McCombe, I. Lo, W.C. Mitchel, and C.E. Stutz, Evidence for a stable excitonic ground state in a spatially separated electron-hole system, Phys. Rev. Lett. 74 (1995) 450-453.

DOI: 10.1103/physrevlett.74.450

Google Scholar

[14] J. Kono, B.D. McCombe, J.P. Cheng, I. Lo, W.C. Mitchel, and C.E. Stutz, Far-infrared magneto-optical study of two-dimensional electrons and holes in InAs/AlxGa1-xSb quantum wells, Phys. Rev. B 55 (1997) 1617-1636.

DOI: 10.1016/s0921-4526(98)00347-0

Google Scholar

[15] V.B. Timofeev, A.V. Larionov, M. Grassi-Alessi, M. Capizzi, and J.M. Hvam, Phase diagram of a two-dimensional liquid in GaAs/AlxGa1-xAs biased double quantum wells, Phys. Rev. B 61 (2000) 8420-8424.

Google Scholar

[16] Y.W. Suen, L.W. Engel, M.B. Santos, M. Shayegan, and D.C. Tsui, Observation of a ν=1/2 fractional quantum Hall state in a double-layer electron system, Phys. Rev. Lett. 68 (1992) 1379-1382.

DOI: 10.1103/physrevlett.68.1379

Google Scholar

[17] J.P. Eisenstein, G.S. Boebinger, L.N. Pfeiffer, K.W. West, and Song He, New fractional quantum Hall state in double-layer two-dimensional electron systems, Phys. Rev. Lett. 68 (1992) 1383-1386.

DOI: 10.1103/physrevlett.68.1383

Google Scholar

[18] U. Sivan, P.M. Solomon, and H. Shtrikman, Coupled electron-hole transport, Phys. Rev. Lett. 68 (1992) 1196-1199.

DOI: 10.1103/physrevlett.68.1196

Google Scholar

[19] T. Hasegawa and M. Shimizu, Electron correlations at metallic densities, II. Quantum mechanical expression of dielectric function with Wigner distribution function, J. Phys. Soc. Jpn. 38 (1975) 965-973.

DOI: 10.1143/jpsj.38.965

Google Scholar

[20] L. Liu, L. Świerkowski, D. Neilson, and J. Szymański, Static and dynamic properties of coupled electron-electron and electron-hole layers, Phys. Rev. B 53 (1996) 7923-7931.

DOI: 10.1103/physrevb.53.7923

Google Scholar

[21] K.S. Singwi, M.P. Tosi, R.H. Land, and A. Sjölander, Electron correlations at metallic densities, Phys. Rev. 176 (1968) 589-599.

DOI: 10.1103/physrev.176.589

Google Scholar

[22] G. Senatore, F. Rapisarda, and S. Conti, Novel electron gas systems, Int. J. Mod. Phys. B 13 (1999).

Google Scholar

[23] M.G. Nayak and L.K. Saini, Ground-state properties of electron-electron quantum bilayers, J. Low Temp. Phys 162 (2011) 516-523.

DOI: 10.1007/s10909-010-0278-0

Google Scholar

[24] F. Stern, Polarizability of a two-dimensional electron gas, Phys. Rev. Lett. 18 (1967) 546-548.

DOI: 10.1103/physrevlett.18.546

Google Scholar