Study on CdSe Nanoparticles Synthesized by Chemical Method

Article Preview

Abstract:

CdSe is a II-VI group semiconducting material with optimum bulk band gap of 1.74eV. It is a promising material due to its wide range of technological applications in optoelectronics devices. CdSe nanoparticles have been synthesized at different temperatures starting from Room temperature to 80°C using appropriate precursor solutions containing Cadmium acetate, Triethanolamine (TEA), Ammonia and Sodium selenosulphate. The pH of Solution was around 10.50 ± 0.10 during synthesis. We confirmed the elemental analysis by Energy Dispersive X-ray Analysis (EDAX) and X-ray Photoelectron Spectroscopy (XPS) technique. X-Ray Diffraction (XRD) studies shows that the synthesized nanoparticles belonged to cubic phase with crystallite size lying between 2nm-4nm. The effect of temperature on particle size, lattice parameter, density of dislocation and strain were investigated. Blue shift of 103nm to125nm has been observed from optical absorption spectra and raman measurements performed at room temperature using He-Ne laser (632nm, 5mW) showed the presence of longitudinal optical phonon modes. Photoluminescence (PL) studies shows a shift of 30nm when compared with the bulk PL emission peak.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-282

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Mathew, J. Pantoja Enriquz, A. Romeo, A.N. Tiwari, CdTe/CdS solar cells on flexible substrates, Solar Energy. 77 (2004) 831-838.

DOI: 10.1016/j.solener.2004.06.020

Google Scholar

[2] E. Benamar, M. Rami, M. Fahoume, F. Chraibi, A. Ennaoui, Electrodeposited cadmium selenide films for solar cells, Ann. Chim. Sci. Mater. 23 (1998) 369-372.

DOI: 10.1016/s0151-9107(98)80094-9

Google Scholar

[3] D.J. Peno, J.K.N. Mbindyo, A.J. Caado, T.E. Mallouk, C.D. Keating, B. Razavi, T. Mayer S, Template growth of metal-CdSe-metal nanowires, J. Phys. Chem. B. 106 (2002) 7458-7462.

DOI: 10.1021/jp0256591

Google Scholar

[4] V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature. 370 (1994) 354-357.

DOI: 10.1038/370354a0

Google Scholar

[5] S. Coe, W.K. Woo, M. Bawendi, V. Bulovic, Electroliminescence from single monolayers of nanocrystals in molecular organic devices, Nature. 420 (2002) 800-803.

DOI: 10.1038/nature01217

Google Scholar

[6] N. Tessler, V. Medvedev, M. Kazes, S.H. Kan, U. Banin, Efficient near-infrared polymer nanocrystal light emitting diodes, Science. 295 (2002) 1506-1508.

DOI: 10.1126/science.1068153

Google Scholar

[7] X.F. Duan, C.M. Niu, V. Sahi, J. Chen, J.W. Parce, S. Emperdocles, J.L. Goldman, High performance thin film transistors assembled from semiconductor nanowires and nanoribbons, Nature. 425 (2003) 274-278.

DOI: 10.1038/nature01996

Google Scholar

[8] V.I. Klimov, A.A. Mikhailovsky, S.H. Xu, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, M.G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots, Science. 290 (2000) 314-317.

DOI: 10.1126/science.290.5490.314

Google Scholar

[9] W.U. Huynh, X.G. Peng, A.P. Alivisatos, CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices, Adv. Mater. 11 (1999) 923-927.

DOI: 10.1002/(sici)1521-4095(199908)11:11<923::aid-adma923>3.0.co;2-t

Google Scholar

[10] M. Green, P.O. Brien, Recent advances in the preparation of semiconductors as isolated nanometric particles: new routes to quantum dots, Chem. Commun. (1999) 2235-2241.

DOI: 10.1039/a904202d

Google Scholar

[11] S.L. Cumberland, K.M. Hanif, A. Javier, G.A. Khitrov, G.F. Strouse, S.M. Woesser, C.S. Yun, Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials, Chem. Mater. 14 (2002) 1576-1584.

DOI: 10.1021/cm010709k

Google Scholar

[12] J.J. Zhu, S. Xu, H. Wang, J.M. Zhu, H. -Y. Chen, Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route, J. Advanced materials. 15 (2003) 156-159.

DOI: 10.1002/adma.200390033

Google Scholar

[13] J.P. Ge, Y.D. Li, G.Q. Yang, Mechanism of aqueous ultrasonic reaction: controlled synthesis, luminescence properties of amorphous cluster and nanocrystalline CdSe, Chem. Commun. 17 (2002) 1826-1827.

DOI: 10.1039/b203230a

Google Scholar

[14] J.J. Zhu, O. Palchik, S. Chen, A. Gedanken, Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles, J. Phys. Chem. B. 104 (2000) 7344-7347.

DOI: 10.1002/chin.200102243

Google Scholar

[15] L.H. Qu, Z.A. Peng, X.G. Peng, Alternative routes toward high quality CdSe nanocrystal Nano Lett. 6 (2001) 333-337.

DOI: 10.1021/nl0155532

Google Scholar

[16] J. Hambrock ,  A. Birkner, A. Fischer, Synthesis of CdSe nanoparticles using various organometallic cadmium precursors, J. Mater. Chem. 11 (2001) 3197-3201.

DOI: 10.1039/b104231a

Google Scholar

[17] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E= sulphur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706−8715.

DOI: 10.1021/ja00072a025

Google Scholar

[18] J.E.B. Katari, V.L. Colvin, A.P. Alivisatos, X-Ray Photoelectron-Spectroscopy of Cdse Nanocrystals with Applications to Studies of the Nanocrystal Surface, J. Phys. Chem. 98 (1994) 4109−4117.

DOI: 10.1021/j100066a034

Google Scholar

[19] H.E. Esparza-Ponce, J. Hernandez-Borja, A. Reyes-Rojas, M. Cervantes Sancheza, Y.V. Vorobiev, R. Ramirez-Bon, J.F. Perez-Robles, J. Gonzalez-Hernandez, Growth technology X-ray and optical properties of CdSe thin film, Journal of Materials Chemistry and Physics. 113 (2009).

DOI: 10.1016/j.matchemphys.2008.08.060

Google Scholar

[20] JCPDS File No: 19 – 0191.

Google Scholar

[21] X. Chen, J.L. Hutchison, P.J. Dobson, G. Wakefield, A one step aqueous synthetic route to extremely small CdSe nanoparticles, J. Colloid and Interface Science. 319 (2008) 140–143.

DOI: 10.1016/j.jcis.2007.11.043

Google Scholar

[22] N.N. Dlamini, V.S.R. Rajasekhar Pullabhotla, N. Revaprasadu, Synthesis of TEA capped CdSe nanoparticles, Materials Letters. 65 (2011) 1283–1286.

DOI: 10.1016/j.matlet.2011.01.050

Google Scholar

[23] K. Girija, S. Thirumalairajan, S.M. Mohan, J. Chandrasekaran, Structural, morphological and optical studies of Cdse thin films from ammonia bath, Chalcogenide Letters. 6 (2009) 351 – 357.

Google Scholar

[24] M.A. Hernandez-Perez, J. Aguilar-Hernandez, G. Contreras-Puente, J.R. Vargas-Garcia, E. Rangel-Salinas, Comparative optical and structural studies of CdSe films grown by chemical bath deposition and pulsed laser deposition, Physica E: Low-dimensional Systems and Nanostructures. 40 (2008).

DOI: 10.1016/j.physe.2007.10.102

Google Scholar

[25] A.J.P. Wilson, Mathematical Theory of X-ray Powder Diffractometry, Gordon & Breach, New York (1963).

Google Scholar

[26] G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Phil. Mag. 1 (1956) 34-45.

DOI: 10.1080/14786435608238074

Google Scholar

[27] S. Velumani, X. Mathew, P.J. Sebastian, S.K. Narayandass, D. Mangalaraj, Structural and optical properties of hot wall deposited CdSe films, Sol. Energy Mater. Sol. Cells. 76 (2003) 347.

DOI: 10.1016/s0927-0248(02)00287-8

Google Scholar

[28] B.D. Culity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edition, Prentice Hall, upper saddle river (2001).

Google Scholar

[29] S. Singh, M.C. Rath, A.K. Singh, T. Mukherjee, O.D. Jayakumar, A.K. Tyagi, S.K. Sarkar, CdSe nanoparticles grown via radiolytic methods in aqueous solutions Radiation Physics and Chemistry. 80 (2011) 736–741.

DOI: 10.1016/j.radphyschem.2011.01.015

Google Scholar

[30] C. Whiston, X-ray Methods, John Wiley, New York, (1991).

Google Scholar

[31] A.S. Edelestein, R.C. Camarata, Nanomaterials: Synthesis Properties and Application, Institute of Physics Publishing, (1998).

Google Scholar

[32] H. Zhu, M. Sun, X. Yang, A simple selenium source to synthesize CdSe via the two-phase thermal approach, Colloids and surfaces. 320 (2008) 74-77.

DOI: 10.1016/j.colsurfa.2008.01.031

Google Scholar

[33] Umme Farva & ChinhoPark, Influence of thermal annealing on the structural and optical properties of CdSe nanoparticles, Solar Energy Materials & Solar Cells. 94 (2010) 303-309.

DOI: 10.1016/j.solmat.2009.10.003

Google Scholar

[34] L. Xi, Y.M. Lam, Y.P. Xu, L.J. Li, Synthesis and characterization of one-dimensional CdSe by a novel reverse micelle assisted hydrothermal method, Journal of Colloid and Interface Science. 320 (2008) 491–500.

DOI: 10.1016/j.jcis.2008.01.048

Google Scholar

[35] S. Chaure, N.B. Chaure, R.K. Pandey, Self Assembled Nanocrystalline CdSe thin Films Physica E. 28 (2005) 439–446.

DOI: 10.1016/j.physe.2005.05.044

Google Scholar

[36] N.N. Maseko, N. Revaprasadu, V.S.R. Rajasekhar Pullabhotla, R. Karthik, P.O. Brien, The influence of the cadmium source on the shape of CdSe nanoparticles, Materials Letters. 64 (2010) 1037–1040.

DOI: 10.1016/j.matlet.2010.02.002

Google Scholar

[37] G. Ramalingam, J. Madhavan, Investigation on the structural and morphological behaviour of CdSe nanoparticles by hydrothermal method, Archives of Applied Science Research. 3 (2011) 217-224.

Google Scholar

[38] J. Singh, G.S. Lotey, N.K. Verma, Structural, optical and magnetic properties of Cr-doped CdSe, Digest Journal of Nanomaterials and Biostructures. 6 (2011) 1733-1740.

Google Scholar

[39] N.R. Kulish, V.P. Kunets, M.P. Lisitsa, Determination of the parameters of semiconductor quantum dots in glassy matrices from the absorption and luminescence spectra and from saturation of the optical absorption, Phys. Solid State. 39 (1997).

DOI: 10.1134/1.1130216

Google Scholar

[40] A.I. Ekimov, F. Hache, M.C. Schanne-Klein, D. Ricard, C. Flytzanis, I.A. Kudryavtsev, T.V. Yazeva, A.V. Rodina, A.L. Efros, Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions, J. Opt. Soc. Am B. 10 (1993).

DOI: 10.1364/josab.10.000100

Google Scholar

[41] M.N. Barah, S. Chaliha, P.C. Sarmah, A. Rahman, Electrical properties of thermally evaporated doped and undoped films of CdSe, Indian Jounal of Pure & Applied Physics. 45(2007) 687-691.

Google Scholar

[42] C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menendez-Proupin, A.I. Ekimov, Optical Vibrons in CdSe Dots and Dispersion Relation of the Bulk Material, Phys. Rev. B. 57 (1998) 4664-4669.

DOI: 10.1103/physrevb.57.4664

Google Scholar

[43] J. Zhu, X. Liao, X. Zhao, J. Wang, Photochemical synthesis and characterization of CdSe nanoparticles, Materials Letters. 47 (2001) 339–343.

DOI: 10.1016/s0167-577x(00)00263-9

Google Scholar

[44] A. Manna, R. Bhattacharya, T.K. Das, S. Saha, Effect of reducing agent in the formation of CdSe nanoparticles by chemical reduction route Physica B. 406 (2011) 981–984.

DOI: 10.1016/j.physb.2010.12.042

Google Scholar