Structural and Vibrational Properties of FeO Using First-Principles

Article Preview

Abstract:

We have studied the equation of states and vibrational properties of FeO using DFT based plane-wave pseudopotential (PW-DFT) within the generalized gradient approximation. The calculated cohesive properties at ambient condition, namely, lattice constant (a0), bulk modulus (B0) and its first pressure derivative (), are reported for B1-phase of FeO, in agreement with previous experimental and other theoretical results. A linear-response approach to the density functional theory was used to derive the phonon frequencies and phonon density of state (p-dos). Further, in order to calculate both static and dynamic equations of states, nearest-neighbour second-moment tight-binding energy model (TB-SMA) was used. Parameters of the present TB-SMA model were determined by the present ab initio pseudopotential calculations. It is found that the present simple TB-SMA scheme is able to mimic shock Hugoniot for such oxides correctly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-52

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.E. Cohen, I.I. Mazin and D.G. Isaak, Science, 275 (1997) 654-657.

Google Scholar

[2] H. Ozawa, K. Hirose, S. Tateno et al., Phys. Earth Planet. Inter., 179 (2010) 157-163.

Google Scholar

[3] R.A. Fischer, A.J. Campbell, G.A. Shofner et al., Earth Planet. Sci. Lett., 304 (2011) 496-502.

Google Scholar

[4] P. Bhardwaj and S. Singh, Cent. Eur. J. Chem., 8 (2010) 126.

Google Scholar

[5] K.N. Jog, R.K. Singh and S.P. Sanyal, Phys. Rev. B, 31 (1985) 6047-6057.

Google Scholar

[6] S. Gupta and S.C. Goyal, AIP Advances, 1 (2011) 022123(5).

Google Scholar

[7] A.E. Gheribi, J.M. Roussel and J. Rogez, J. Phys.: Condens. Matter, 19 (2007) 476218(9).

Google Scholar

[8] Quantum espresso Code, http: /www. pwscf. org.

Google Scholar

[9] J.P. Perdew and Y. Wang, Phys Rev. B, 45 (1992) 13244-13249.

Google Scholar

[10] H. J. Monkhorst and J.D. Pack, Phys. Rev. B, 13, (1976) 5188-5192.

Google Scholar

[11] M. Methfessel and A. Paxton, Phys. Rev. B, 40, (1989) 3616-3621.

Google Scholar

[12] F.D. Muranghan, Proc. Natl. Acad. Sci., 30 (1944) 244-247.

Google Scholar

[13] C.A. McCammon and L Liu, Phys. Chem. Miner., 10 (1984) 106.

Google Scholar

[14] I. Jackson, S. Khanna, A. Revcdevschi and J. Berthon, J. Geoophys. Res., 95 (1990) 21671-21685.

Google Scholar

[15] Z. Fang, I. Solovyev, H. Sawada and K. Terakura, Phys. Rev. B, 59 (1999) 762-774.

Google Scholar

[16] CRC Handbook of Chemistry & Physics, entitled by D.R. Linde, CRC Press, Boca Raton, FL, (2007).

Google Scholar

[17] J. Kolorenc and L. Mitas, Phys. Rev. Lett., 101 (2008) 185502(5).

Google Scholar

[18] T. Yagi, T. Suzuki and S. Akimoto, J. Geophys. Res., 90 (1985) 8784-8788.

Google Scholar

[19] R.L. Clendenen and H.G. Drickamer, J. Chem. Phys., 44 (1966) 4223-4228.

Google Scholar

[20] R. Jeanloz and T.J. Ahrens, Geophys. J.R. Astr. Soc., 62 (1980) 505-508.

Google Scholar

[21] G. Kugel, C. Carabatos, B. Hennion et al., Phys. Rev. B, 16 (1977) 378-385.

Google Scholar

[22] G. Shen, W. Sturhahn, E.E. Alp et al., Phys. Chem. Minerals, 31 (2004) 353-359.

Google Scholar