Comparison of Certain Local Pseudopotentials and a New Proposal

Article Preview

Abstract:

A new proposal of a local pseudopotential is put forwarded here depending on the concept of extended core radius in which half of the nearest neighbour distance is treated as effective core radius. There is no input of any property for fitting this parameter in this formalism. This pseudopotential is found to satisfy all the necessary requirements for applications. With this model potential we have evaluated the form factors for several bcc, fcc and hcp metals and achieved excellent agreement with previous results. On the same footing, we have examined other 14 local pseudo potentials also and on the basis of the comparison, the presently proposed pseudopotential is found to be much better. As a test case study, we have evaluated phonon dispersion curves of some liquid metals, viz. Na (Z = 1), Mg (Z = 2), Al (Z= 3) and Pb (Z = 4) and obtained quite satisfactory results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-73

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. W. Aschroft, Phys. Lett. 23 (1966) 48-53.

Google Scholar

[2] R. W. Shaw, Phys. Rev. 174 (1968) 769-781.

Google Scholar

[3] S. C. Vrati, N. Rani, and D. K. Gupta, Phys. Lett. A 74 (1979) 139-140.

Google Scholar

[4] C. M. Kachhava and K. S. Sharma, Phys. Stat. Sol. (b) 97 (1981) 601.

Google Scholar

[5] L. I. Yastrebov and A. A. Katsnelson, Foundation of One Electron Theory of Solids, Mir Publishers, Moscow (1987).

Google Scholar

[6] A. R. Jani, P. N. Gajjar, and H. K. Patel, Phys. Stat. Sol. (b) 169 (1991) K105-K108.

Google Scholar

[7] A. R. Jani, H. K. Patel, and P. N. Gajjar, Ind. J. Pure App. Phys. 31 (1993) 439-443.

Google Scholar

[8] P . N. Gajjar, B. Y. Thakore, M. H. Patel, and A. R. Jani, Prajna 3 (1993) 93.

Google Scholar

[9] P. N. Gajjar, B. Y. Thakore, H. K. Patel et al. Acta Physica Polonica A 88 (1995) 489.

Google Scholar

[10] M. H. Patel, A. M. Vora, P. N. Gajjar et al. Physica B 304 (2001) 152-158.

Google Scholar

[11] J. K. Baria, P. N. Gajjar, and A. R. Jani, Ind. J. Pure Appl. Phys. 40 (2002) 714-717.

Google Scholar

[12] P. N. Gajjar, Manjul Kumar, et al. Ind. J. Phys. 79 (2005) 967-972.

Google Scholar

[13] A. R. Jivani, H. J. Trivedi, P. N. Gajjar, et al. Semiconductor Physics, Quantum Electronics and Optoelectronics 8 (2005) 14-17.

Google Scholar

[14] P. S. Vyas, P. N. Gajjar, B. Y. Thakore et al. Commun. Theor. Phys. 50 (2008) 763-766.

Google Scholar

[15] W. A. Harrison, Pseudopotentials in the Theory of Metals, W.A. Benjamin, New York (1967); Elementary Electronic Structure, World Scientific, Singapore (1999).

Google Scholar

[16] V. Heine, M. L. Cohen, and D. Weaire, Solid State Physics 24 New York (1970).

Google Scholar

[17] K. N. Khanna, Phys. Stat. Sol. (b) 150 (1981) 485-491.

Google Scholar

[18] M. Idrees, F. A. Khawaja, and M. S. K. Razmi, Sol. Stat. Commun. 41 (1982) 469-472.

Google Scholar

[19] S. Lal, A. Paskin, and F. Leoni, J. Phys. F 5 (1975) 697-701.

Google Scholar

[20] S. Nand, B. B. Tripathi, and H. C. Gupta, J. Phys. Soc. Jpn. 51 (1982) 111.

Google Scholar

[21] N. Singh, S. Prakash, Phys. Lett. A 58(1976) 59-60.

Google Scholar

[22] J. M. Wills and W. A. Harrison, Phys. Rev. B 28 (1983) 4363-4373.

Google Scholar

[23] R. Taylor J. Phys. F 8 (1978) 1699-1702.

Google Scholar

[24] J. Hubbard, L. Beeby, J. Phys. C2 (1969) 556-571.

Google Scholar

[25] Y. Waswda, The Structure of Non Crystalline Materials, USA (1980).

Google Scholar

[26] W. C. Pilgrim, S. Hosokawa, H. Sagau et al. J. Non-Cryst. Sol. 96 (1999) 250-252.

Google Scholar

[27] I. Ebbsjo, T. Kinell and I. Waller, J. Phys. C: Solid State Phys. 11 (1978) L501-4.

DOI: 10.1088/0022-3719/11/13/001

Google Scholar

[28] G. S. Duby'f, R. Bansal and K. N. Pathakj, Physics C: Solid St. Phys., 13 (1980) 6119-6126.

Google Scholar