Structural, Electronic and Elastic Properties of Palladium Nitride

Article Preview

Abstract:

A systematic theoretical study of 4d transition metal nitride, PdN has been carried out using ab initio full potential LAPW method (FP-LAPW) within the generalized gradient approximation (GGA). PdN crystallizes in zinc-blende structure, which is found to be most stable one. We have calculated the ground state properties in terms of lattice constant (a0), Bulk modulus (B0) and its Pressure derivative (B0). The electronic properties such as band structure and density of states reveal that PdN is metallic in nature with large overlap of Pd-d electron at Fermi level. The elastic constant are in good agreement with previous theoretical results for zinc-blende structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-62

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. A. Guanov, L. Ianovsky, and V. P. Zhukov, Electronic Structure Refractor Carbides and Nitrides, Cambridge University Press, Cambridge, (1994).

Google Scholar

[2] L. E. Toth, Transition metal carbides and nitrides, Academic Press, New York, (1974).

Google Scholar

[3] H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics and Applications, Noyes, Westwood, NJ. (1996).

Google Scholar

[4] L. E. Toth, Transition Metal Carbides and Nitrides, Academic New York, (1971).

Google Scholar

[5] P. Villaes, L. D. Calvet, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American society for metals, Matal Park, OH., (1985).

Google Scholar

[6] A. M. Nartowsti, I. P. Parkin, M. Mackenzie, A. Jcraven, I. Macleod, J. Mater. Chem. 9 (1999) 1275-1281.

Google Scholar

[7] K. Nakamura, M. Yashima, Mater Sci. Eng. B 21, 148 (2005) 69-72.

Google Scholar

[8] D. A. Papaconstantopoulas, W. E. Pickett, B. M. Klein, L. L. Boyer, Phys. Rev. B 31 (1985) 752- 761.

Google Scholar

[9] A. Fernandez Guillermet, J. Haglund and G. Grimvall, Phys. Rev. B 45 (1992) 11557-11562.

Google Scholar

[10] C. Stampfl, W. Mannstadt, R. Asahi, A. J. Freeman, Phys. Rev. B 63 (2001) 155106- 155116.

Google Scholar

[11] J. C. Crowhurst, A. F. Goncharov, B. Sadigh, J. M. Zaug, D. Aberg, Y. Meng and V. B. Prakapenka, J. Mater. Res. 23 (2008) 1-5.

DOI: 10.1557/jmr.2008.0027

Google Scholar

[12] R. de. Paiva and R. A. Nogueira, Phys. Rev. B 75 (2007) 085105- 085116.

Google Scholar

[13] E. Deligoz, K. Colacoglu, Y. O. Ciftci, Phys. Status Solidi B 9 (2010) 247-251.

Google Scholar

[14] W. Chen., J. Z. Jiang, Journal of Alloys and Compounds, 499 (2010) 243-254.

Google Scholar

[15] K. K. Koirr, G.O. Amolo and N. W. Makau Diamond and Related Materials 20 (2011) 157-164.

Google Scholar

[16] P. Blaha, K. Schwarz, G. k. H. Madsen D. Kuasnicka and J. Luitz, K. Schwartz Technical Universitat, Wien, Australia, (2001) ISBN 3-9501031-1-2.

Google Scholar

[17] J. P. Perdew, K. Burke and M. Ernzerhop, Phys. Rev. Lett. 77 (1996) 3865-1868.

Google Scholar

[18] F. Birch ,J. Appl. Phys. 9 (1938) 279-288.

Google Scholar