Multi-Walled Carbon Nanotubes by Thermal-CVD Utilizing Palm DHSA as a Precursor

Article Preview

Abstract:

We illustrated the optimization of the growth of multi-wall carbon nanotubes (MWCNTs) using thermal chemical vapor deposition (CVD). Palm-based dihydrostearic acid (DHSA) which was never been reported as a precursor, was used as the precursor over five different trimetallic catalysts for the growth of MWCNTs. These trimetallic catalysts were prepared by sol-gel method and used to study on the effect of the production of the MWCNTs from palm DHSA. With different catalyst, the characteristics of MWCNTs changes such as diameter and crystallinity which was confirmed by SEM and Raman spectroscopy studies. The trimetallic catalysts give high yield and offer good graphitization of MWCNTs produced from palm DHSA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-353

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.F.L. Koay, L.C. Abdullah, R. Yunus, S.Y. Thomas Choong, P. Siwayanan, and A. Salmiah, International Journal of Engineering and Technology 3 (2006) 115-124.

Google Scholar

[2] C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, Nature 388 (1998) 756.

Google Scholar

[3] T. Guo, P. Nikoleav, A. Thess, D.T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243 (1995) 49.

Google Scholar

[4] A. Cassell, N. Franklin, E. Chan, J. Han, H. Dai, J. Am. Soc. 121 (1999) 7959.

Google Scholar

[5] R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. Ruhle, Y.A. Kim, T. Hayashi, M. Endo, Appl. Phys. Lett. 77 (2000) 3385.

DOI: 10.1063/1.1327611

Google Scholar

[6] L.P. Biro, Z. E. Horvath, A. A. Koos, Z. Osvath, Z. Vertesy, Al. Darabont, K. Kertesz, C. Neamtu, Zs. Sarkozi, L. Tapaszto, J. Optoelectron. Adv. Mater. 5 (2003) 661.

Google Scholar

[7] M. Kumar, Y. Ando, Chem. Phys. Lett. 374 (2003) 521.

Google Scholar

[8] R.A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, P.R. Somani, M. Umeno, Microporous and Mesoporous Mater. 96 (2006) 184.

DOI: 10.1016/j.micromeso.2006.06.036

Google Scholar

[9] N. Zhao, C. He, Z. Jiang, J. Li, Y. Li, Materials Letters 60 (2006) 159-163.

Google Scholar

[10] M. Kumar, Y. Ando, Carbon (2005) 533-540.

Google Scholar

[11] N. Nagaraju, A. Fonseca, Z. Konya, J.B. Nagy, J. Mol. Cat. A: Chem. 181 (2002) 57-62.

Google Scholar

[12] C. Chia-Ming, D. Yong-Ming, H. Jenn Gwo, and J. Jih-Mirn, Carbon 44 (2006) 1808.

Google Scholar

[13] B. Chen, P. Wu, Carbon 43 (2005) 3172.

Google Scholar

[14] T. Theodoros, X. Panagiotis, J. Lubos, G. Dimitrios, S. Athanasia, B. Thomas, and A. Michael, Diam. Relat. Mater. 16 (2007)155.

Google Scholar

[15] C. Ta-Tung, L. Yih-Ming, S. Yuh,W. Ha-Tao, G. Ming-Der, Mater. Chem. Phys. 97 (2006) 511.

Google Scholar

[16] E. Lamouroux, P. Serp, Y. Kihn, P. Kalck, Appl. Catal. A: Gen. 323 (2007) 162.

Google Scholar

[17] M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon 40 (2002) (2043).

DOI: 10.1016/s0008-6223(02)00066-0

Google Scholar