Malaysian Palm Oil For Carbon Nanotubes Preparation

Article Preview

Abstract:

Carbon nanotubes The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the discovery of ‘carbon nanotubes’ (CNTs, elongated fullerene) added a new dimension to knowledge of technology2. Today, ‘nanotechnology’ is a hot topic attracting scientist, industrialists, journalist, governments, and even the general public. Nanotechnology is the creation of functional materials, devices and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc.) at that length scale. CNTs are supposed to be the key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

343-348

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Nature 354 (1991) 56-58.

Google Scholar

[2] M. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, USA, (1996).

DOI: 10.1002/adma.19970091518

Google Scholar

[3] M. B. Nardelli, B. I. Yakobson and J. Bernholc, Phys. Rev. B 57 (1998) 4277.

Google Scholar

[4] C.M. Lieber, Top. Appl. Phys. 80 (2001) 173.

Google Scholar

[5] C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, Nature 388 (1998) 756.

Google Scholar

[6] T. Guo, P. Nikoleav, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243 (1995) 49.

Google Scholar

[7] Siang-Piao Chai, Sharif Hussein Sharif Zein and Abdul Rahman Mohamed, Chem Phys Lett 426 (2006) 345-350.

Google Scholar

[8] S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Joanov, J.B. Nagy, Science 265 (1994) 635.

Google Scholar

[9] A. Cassell, N. Franklin, E. Chan, J. Han, H. Dai, J. Am, Chem. Soc. 121 (1999) 7959.

Google Scholar

[10] R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. Ruhle, Y.A. Kim, T. Hayashi, M. Endo, Appl. Phys. Lett. 77 (2000) 3385.

DOI: 10.1063/1.1327611

Google Scholar

[11] K. Mukhopadhyay, K.M. Krishna, M. Sharon, Phys. Rev. Lett. 72 (1994) 3184.

Google Scholar

[12] K. Mukhopadhyay, M. Sharon, Mater. Chem. Phys. 49 (1997) 105.

Google Scholar

[13] K. Mukhopadhyay, K.M. Krishna, M. Sharon, Mater. Chem. Phys. 49 (1997) 252.

Google Scholar

[14] M. Sharon, K. Mukhopadhyay, K. Yase, S. Iijima, Y. Ando,X. Zhao, Carbon 56, 284 (1998).

Google Scholar

[15] J. Guo and A.C. Lua, Mater. Lett. 55 (2002) 334.

Google Scholar

[16] Aik Chong Lua and Jia Guo, Carbon 36 (11) (1998) 1663-1670.

Google Scholar

[17] M. Sharon, K. Mukhopadhyay, I. Mukhopadhyay, K.M. Krishna, Carbon 33 (1995) 331.

Google Scholar

[18] M. Sharon, K. Mukhopadhyay, K. Yase, S. Iijima, Y. Ando, X. Zhao, Carbon 36 (1998) 507.

DOI: 10.1016/s0008-6223(98)00060-8

Google Scholar

[19] M. Sharon, N. Sundarakoteeswaran, P.D. Kichambare, M. Kumar, Y. Ando, X. Zhao, Diam. Relat. Mater. 8 (1999) 485.

Google Scholar

[20] K. Mukhopadhyay, I. Mukhopadhyay, M. Sharon, T. Soga, M. Umeno, Carbon 35 (1997) 863.

DOI: 10.1016/s0008-6223(97)80177-7

Google Scholar

[21] K.M. Krishna, T. Soga, K. Mukhopadhyay, M. Sharon, M. Umeno, Sol. Energy Mater. Sol. Cells 48 (1997) 25.

Google Scholar

[22] M. Sharon, M. Kumar, P.D. Kichambare, N.R. Avery, K.J. Black, Mol. Cryst. Liquid Cryst. 340 (2000) 523.

Google Scholar

[23] M. Kumar, P.D. Kichambare, M. Sharon, N.R. Avery, K.J. Black, Mater. Chem. Phys. 66 (2000) 83.

Google Scholar

[24] Rakesh A. Afre, T. Soga, T. Jimbo, Mukul Kumar, Y. Ando, M. Sharon, Prakash R. Somani, M. Umeno, Microporous and Mesoporous Materials (2006) 184-190.

DOI: 10.1016/j.micromeso.2006.06.036

Google Scholar