Sintering of Ultrahigh Density and Highly Conductive ZnO-Ga2O3 Ceramic Targets

Article Preview

Abstract:

The ultrahigh density Gallium (Ga2O3 1 wt%) doped zinc oxide (ZnO, 99wt%) targets were prepared by air sintering. The relative density, conductivity, bending strength, Vickers hardness and shrinkage ratio of GZO targets were measured. The morphologies and microstructures were characterized by XRD and SEM. It turns out that sintered GZO targets achieved a relative density of 98%, square resistance of 7Ω/□, Vickers hardness of 310HV and a bending strength of 90.79MPa. The best sintering temperature is 1300°C. The Ga2O3 added can effectively enter into the ZnO lattice structure to form solid solution during sintering. The second phase of GaZn2O4 turned out when the sintering temperature was 1350°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

670-674

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Minami T. Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications. Thin Solid Films 2008; 516: 1314-21.

DOI: 10.1016/j.tsf.2007.03.082

Google Scholar

[2] Fang G, Li D Yao BL. Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering. Vacuum 2003; 68: 363-72.

DOI: 10.1016/s0042-207x(02)00544-4

Google Scholar

[3] J. -K. Sheu, Y.S. Lu, M. -L. Lee, W.C. Lai, C.H. Kuo, C. -J. Tun, Appl. Phys. Lett. 90(2007) 263511.

Google Scholar

[4] V. Bhosle, J.T. Prater, F. Yang, D. Burk, S.R. Forrest, J. Narayan, J. Appl. Phys. 102(2007) 023501.

Google Scholar

[5] L. Wang, M. -H. Yoon, A. Facchetti, T.J. Marks, Adv. Mater. 19(2007)3252.

Google Scholar

[6] S. Fay,U. Kroll,C. Bucher, et al. Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: Temperature-induced morphological changes, Solar Energy Materials Solar Cells 86 (2005) 385-397.

DOI: 10.1016/j.solmat.2004.08.002

Google Scholar

[7] X.L. Chen, X.H. Geng, J.M. Xue, et al. Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition, Journal of Crystal Growth 296 (2006) 43-50; 2.

DOI: 10.1016/j.jcrysgro.2006.08.028

Google Scholar

[8] W.B. Pearson, Crystal Chemistry and Physics of Metals and Alloys, Wiley, New Youk, 1972, p.76.

Google Scholar

[9] H. Kato, M. Sano, K. Miyamoto, T. Yao, J. Crystal Growth 538(2002) 237.

Google Scholar

[10] X. Bie, J.G. Lu, L. Gong, L. Lin, B.H. Zhao, Z.Z. Ye, Applied Surfacce Science 256 (2009) 289.

Google Scholar

[11] W.T. Yen, Y.C. Lin P.C. Yao J.H. Ke, Y.L. Chen, Applied Surface Science 256(2010) 3432.

Google Scholar

[12] Zhang XB, Pei ZL, Gong J, Sun C. Investigation on the electrical properties and inhomogeneous distribution of ZnO: Al thin films prepared by DC magnetron sputtering at low deposition temperature. J Appl phys 2007; 101: 014910.

DOI: 10.1063/1.2407265

Google Scholar

[13] Yang W, Liu Z, Peng DL, Zhang F, Huang H, Xie Y, et al. Room-temperature deposition of transparent conducting Al-doped ZnO. Appl Surf Sci 2009; 255: 5669-73.

DOI: 10.1016/j.apsusc.2008.12.021

Google Scholar

[14] Cebulla R, Wendt R, Ellmer K. Al-doped zinc oxide films deposited by stimultaneous RF and DC excitation of a magnetron plasma: relationships between plasma parameters and structural and electrical film properties. J Appl Phys 1998; 83: 95-1087.

DOI: 10.1063/1.366798

Google Scholar

[15] W.D. Jones: Principles of Powder Metallurgy, Edward Arnold, (1960).

Google Scholar

[16] Guan Zhenduo, Zhang Zhongtai, Jiao Jinsheng, physical properties of inorganic material, Beijing: pressed by qinghua university, 2004, page82.

Google Scholar