Effect of Growth Atmosphere on the Structural, Optical and Magnetic Properties of Fe-Doped In2O3 Films

Article Preview

Abstract:

Room temperature ferromagnetism was observed in Fe-doped In2O3 films deposited on fused quartz substrates by radiofrequency magnetron sputtering in N2 and O2 atmosphere, respectively. Results show that with increasing the O2 and N2 flux, the lattice constant increases, the optical band gap decreases, and the ferromagnetism weakens. Moreover, the decrease in the saturation magnetization for films deposited in N2 atmosphere is more apparent than that deposited in O2 atmosphere. We think the reason is that in our Fe-doped In2O3 films the ferromagnetism is mainly mediated by the oxygen vacancies, and as an acceptor defect, N ions can decrease the concentration of the oxygen vacancies to a greater extent than the O ions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

757-761

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000).

Google Scholar

[2] K. Ueda, H. Tabata and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

Google Scholar

[3] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Ahuja, J. M. O. Guillen, B. Johansson and G. A. Gehring, Nat. Mater. 2, 673 (2003).

Google Scholar

[4] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyaw, S. Koshihara and H. Koinuma, Science 291, 854 (2001).

DOI: 10.1126/science.1056186

Google Scholar

[5] S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. DasSarma, H. D. Drew, R. L. Greene and T. Venkatesan, Phys. Rev. Lett. 91, 077205 (2003).

DOI: 10.1063/1.1610796

Google Scholar

[6] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).

Google Scholar

[7] N. H. Hong, J. Sakai, N. T. Huong and Virginie Brizé, Appl. Phys. Lett. 87, 102505 (2005).

Google Scholar

[8] O. D. Jayakumar, I. K. Gopalakrishnan, S. K. Kulshreshtha, Amita Gupta, K. V. Rao, D. V. Louzguine-Luzgin, A. Inoue, P. A. Glans, J. H. Guo, K. Samanta, M. K. Singh and R. S. Katiyar, Appl. Phys. Lett. 91, 052504 (2007).

DOI: 10.1063/1.2757589

Google Scholar

[9] Z. H. Zhang, Xuefeng Wang, J. B. Xu, S. Muller, C. Ronning and Quan Li, Nature Nanotechnology 4, 523 (2009).

Google Scholar

[10] K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald and Kannan M. Krishnan, Phys. Rev. Lett. 94, 157204 (2005).

Google Scholar

[11] S. Colis, A. Bouaine, R. Moubah, G. Schmerber, C. Ulhaq-Bouillet, A. Dinia, L. Dahéron, J. Petersen and C. Becker, J. Appl. Phys. 108, 053910 (2010).

DOI: 10.1063/1.3481026

Google Scholar

[12] X. J. Liu, X. Y. Zhu, C. Song, F. Zeng and F. Pan, J. Phys. D: Appl. Phys. 42, 035004 (2009).

Google Scholar

[13] J. He, S. Xu, Y. K. Yoo, Q. Xue, H. C. Lee, S. Cheng, X. D. Xiang, G. F. Dionne and I. Takeuchi, Appl. Phys. Lett. 86, 052503 (2005).

DOI: 10.1063/1.1851618

Google Scholar

[14] P. F. Xing, Y. X. Chen, Shi-ShenYan, G. L. Liu, L. M. Mei, K. Wang, X. D. Han and Z. Zhang, Appl. Phys. Lett. 92, 022513 (2008).

Google Scholar

[15] P. F. Xing, Y. X. Chen, Shi-Shen Yan, G. L. Liu, L. M. Mei and Z. Zhang, J. Appl. Phys. 106, 043039 (2009).

Google Scholar

[16] XING Peng-Fei, CHEN Yan-Xue, TANG Min-Jian, YAN Shi-Shen, LIU Guo-Lei, MEI Liang-Mo and JIAO Jun, Chin. Phys. Lett. 26, 117503 (2009).

DOI: 10.1088/0256-307x/26/11/117503

Google Scholar

[17] Z. Z. Ye, J. G. Lu, H. H. Chen, Y. Z. Zhang, L. Wang, B. H. Zhao, J. Y. Huang, J. Crystal Growth 253, 258 (2003).

Google Scholar

[18] J. T-Thienprasert, J. Nukeaw, A. Sungthong, S. Porntheeraphat, S. Singkarat, D. Onkaw, S. Rujirawat, and S. Limpijumnong, Appl. Phys. Lett. 93, 051903 (2008).

DOI: 10.1063/1.2965802

Google Scholar