Room Temperature Magnetoelectric Coupling in Bi5Ti3FeO15 Ceramics

Article Preview

Abstract:

Magnetoelectric(ME) coupling at room temperature(RT) in four-layered perovskite Bi5Ti3FeO15(BTFO) ceramics prepared by conventional solid state reaction method was observed. Unsaturated ferroelectric hysteresis loop with 2Pr=0.464 μC/cm2 and 2Ec=25 kV/cm at an applied electric field 58 kV/cm was obtained because of lower breakdown voltage which maybe induced by lower relative density of the sample. A weak ferromagnetic (Mr=0.122 memu/g, Hc=69 Oe) rather than an antiferromagnetic property was observed at RT by magnetic measurement. Significantly, the ME coupling between the electric dipoles and magnetic dipoles at RT was demonstrated by measuring the effect of magnetic and DC electric poling on ferroelectric and magnetic hysteresis loops, respectively. Both Pr and Mr decreased after magnetic and DC electric poling. And the rate of Pr change decreased with increasing measuring electric field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

762-766

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Fiebig: J. Phys. D Vol. 38 (2005), p. R123.

Google Scholar

[2] H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L.M. Ardabili, T. Zhao, L.S. Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd and R. Ramesh: Science Vol. 303 (2004), p.661.

DOI: 10.1126/science.1094207

Google Scholar

[3] G.A. Smolenskii and I. Chupis: Sov. Phys. Usp. Vol. 25 (1982), p.475.

Google Scholar

[4] I. Sosnowska, T. Peterlin-Neumaier and E. Steichele: J. Phys. C Vol. 15 (1982), p.4835.

Google Scholar

[5] J.R. Teague, R. Gerson and W.J. James: Solid State Commun. Vol. 8 (1970), p.1073.

Google Scholar

[6] J.R. Cheng, N. Li and L.E. Cross: J. Appl. Phys. Vol. 94 (2003), p.5153.

Google Scholar

[7] C.F. Chung, J.P. Lin and J.M. Wu: Appl. Phys. Lett. Vol. 88 (2006), p.242909.

Google Scholar

[8] C.A. Araujo, J.D. Cuhair, L.D. McMillan, M.C. Scott and J.F. Scott: Nature (London) Vol. 374 (1995), p.627.

Google Scholar

[9] X.W. Dong, K.F. Wang, J.G. Wan, J.S. Zhu and J.M. Liu: J. Appl. Phys. Vol. 103 (2008), p.094101.

Google Scholar

[10] X.Y. Mao, W. Wang and X.B. Chen: Solid State Commun. Vol. 147 (2008), p.186.

Google Scholar

[11] X. Y. Mao, W. Wang, X. B. Chen and Y. L. Lu: Appl. Phys. Lett. Vol. 95 (2009), p.082901.

Google Scholar

[12] F.Z. Huang, X.M. Lu, C. Chen, W.W. Lin, X.C. Chen, J.T. Zhang, Y.F. Liu and J.S. Zhu: Solid State Commun. Vol. 150 (2010), p.1646.

Google Scholar

[13] F.J. Yang, P. Su, C. Wei, X.Q. Chen, C.P. Yang and W.Q. Cao: J. Appl. Phys. Vol. 110 (2011), p.126102.

Google Scholar

[14] W.T. Lin, T.W. Chiu, H.H. Yu, J.L. Lin and M.S. Lin: J. Vac. Sci. Technol. A Vol. 21(2003), p.787.

Google Scholar

[15] M. Sedlar and M. Sayer: Ceram. Int. Vol. 22(1996), p.241.

Google Scholar

[16] L.B. Kong, J. Ma, W. Zhu and O.K. Tan: Mater. Lett. Vol. 51 (2001), p.108.

Google Scholar

[17] F. Gao, C. Cai, Y. Wang, S. Dong, X.Y. Qiu, G.L. Yuan, Z.G. Liu and J.M. Liu: J. Appl. Phys. Vol. 99 (2006), p.094105.

Google Scholar

[18] R.S. Singh, T. Bhimasankaram, G.S. Kumar and S.V. Suryananrayana: Solid State Commun. Vol. 91 (1994), p.567.

Google Scholar

[19] N.G. Wang, J. Cheng, A. Pyatakov, A.K. Zvezdin, J.F. Li, L.E. Cross and D. Viehland: Phys. Rev. B Vol. 72 (2005), p.104434.

Google Scholar

[20] V.R. Palkar, D.C. Kundaliya, S.K. Malik and S. Bhattacharya: Phys. Rev. B Vol. 69(2004), p.212102.

Google Scholar

[21] G. Engdahl: Handbook of Giant Magnetostrictive Materials (Academic San Diego, 2000).

Google Scholar