A Compensation Method of Abrasive Surface Error Based on the Piezoelectric Feed

Article Preview

Abstract:

The piezoelectric ceramic has inverse piezoelectric effect, which can be used in the manufacture of the mold internal compensation-driven. We design a multilayer structure with built-in array of piezoelectric ceramic to achieve active deformation to compensate the tool-shaped face. A piezoelectric micro-displacement compensation model is proposed based on the inverse piezoelectric effect of piezoelectric ceramic. According to the initial face error of tool or from wear, a certain amount of DC voltage is applied on the corresponding area of the piezoelectric ceramic elements to produce certain amount of shrinkage, achieving the goal to adjust tool surface. Based on this theory, we develop a device with active deformation compensation and propose an optimization algorithm of applied voltage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-291

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] László Juhász, Jürgen Maas, Branislav Borovac, Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators, Mechatronics. 21 (2011) 329–338.

DOI: 10.1016/j.mechatronics.2010.12.006

Google Scholar

[2] Gorka Aguirre, ThierryJanssens, HendrikVanBrussel, FaridAl-Bender, Asymmetric-hysteresis compensation in piezoelectric actuators, Mechanical Systems and Signal Processing. 30 (2012) 218–231.

DOI: 10.1016/j.ymssp.2011.11.012

Google Scholar

[3] Jonq-Jer Tzen, Shyr-Long Jeng, Wei-Hua Chieng , Modeling of piezoelectric actuator for compensation and controller design, Precision Engineering. 27 (2003) 70–86.

DOI: 10.1016/s0141-6359(02)00183-6

Google Scholar

[4] De Ping Yu, Geok Soon Hong, Yoke San Wong,Profile error compensation in fast tool servo diamond turning of micro-structured surfaces, International Journal of Machine Tools & Manufacture. 52 (2012) 13–23.

DOI: 10.1016/j.ijmachtools.2011.08.010

Google Scholar

[5] L. Jacob, N. Jerry, Stressed-lap Polishing of 3. 6m f/1. 5 and f/1. 0 Mirror. SPIE, 1991, 1531: 260-269.

Google Scholar

[6] Jeong-Du Kim, Dong-Sik Kim, Waviness compensation of precision machining by piezoelectric micro cutting device, International Journal of Machine Tools & Manufacture. 38 (1998) 1305-1322.

DOI: 10.1016/s0890-6955(97)00080-1

Google Scholar

[7] Hartmut Janocha, Klaus Kuhnen, Real-time compensation of hysteresis and creep in piezoelectric actuators, Sensors and Actuators. 79 (2000)83–89.

DOI: 10.1016/s0924-4247(99)00215-0

Google Scholar

[8] G.J. Trmal, F. Holesovsky, Wave-shift and its effect on surface quality in super-abrasive grinding, International Journal of Machine Tools & Manufacture. 41 (2001) 979–989.

DOI: 10.1016/s0890-6955(00)00116-4

Google Scholar

[9] K. Ramesh, H. Huang, L. Yin, and A. Yui, Surface Waviness Controlled Grinding of Thin Mold Inserts Using Chilled Air as Coolant, Materials and Manufacturing Processes Vol. 19, No. 2, p.341–354, (2004).

DOI: 10.1081/amp-120029959

Google Scholar

[10] Wen-Ruey Chang, Raoul Gro Nqvist, Mikko Hirvonen and Simon Matz, The effect of surface waviness on friction between Neolite and quarry tiles , Ergonomics, 22 June, 2004, Vol. 47, No. 8, 890-906.

DOI: 10.1080/00140130410001670390

Google Scholar

[11] Georgios P. Petropoulos, Constantinos N. Pandazaras, J. Paulo Davim, Surface Integrity in Machining, Springer London, 2010, pp.37-66.

DOI: 10.1007/978-1-84882-874-2_2

Google Scholar

[12] Demirci, S. Mezghani, A. Mkaddem, M. El Mansori, Effects of abrasive tools on surface finishing under brittle-ductile grinding regimes when manufacturing glass, Journal of Materials Processing Technology. 210 (2010) 466-473.

DOI: 10.1016/j.jmatprotec.2009.10.009

Google Scholar

[13] Jeong-du Kim, Dal-ho Lee, Keun-bum Lee, The effects of dynamic characteristics on the surface texture in mirror grinding, Int J Adv Manuf Technol. 27(2005): 274–280.

DOI: 10.1007/s00170-004-2177-5

Google Scholar

[14] Chunsheng Zhao, Ultrasonic motors Technologies and Applications, Science Press Beijing and Springer-Verlag Berlin Heidelberg, 2011, pp.38-47.

Google Scholar

[15] Jin Jiamei, Zhao Chunsheng, A novel traveling wave ultrasonic motor using a bar shaped transducer. Journal of wuhan university of technology[J]. Materials Science Edition. 2008, 23: 961-963.

DOI: 10.1007/s11595-008-6961-1

Google Scholar

[16] Chao Chen, Jinsong Zeng, Chunsheng Zhao, Dynamic model of traveling wave-type rotary ultrasonic motor, Chinese Journal of Mechanical Engineering . 2006 , 42(12): 76-28.

DOI: 10.3901/jme.2006.12.076

Google Scholar

[17] Jin Jiamei, Zhang Jiahui, Qian fu, Pan zhenfeng, Improving the Performances of Ultrasonic Motors Using Intermittent Contact Scheme, Front. Mech. Eng. China. 2010, 5(2), pp.242-246.

DOI: 10.1007/s11465-010-0016-y

Google Scholar

[18] Nicola Senin and Gianni Campatelli, Springer-Verlag London, 2011, pp.71-110.

Google Scholar