Hydrothermal Synthesis of Well-Aligned ZnO Nanorod Arrays on Silicon

Article Preview

Abstract:

Zinc oxide (ZnO) nanorod arrays were fabricated on ZnO:Al seeded Si substrates with various reaction temperatures using a low temperature hydrothermal method. The morphology and structure of ZnO nanorod arrays were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It reveals that the ZnO nanorods grow vertically on Si surface with (002) preferential orientation. The transmittance spectra show the ZnO nanorod arrays fabricated at low temperatures have high transmittance in the visible region and decrease with reaction temperature increasing. Moreover, the same trend was also observed in the reflectance spectra of the ZnO nanorod arrays. The optimal reaction temperature is of 120 °C for ZnO nanorod arrays with high transmittance (~80%) and low reflectance (~10%) in the visible region. The superior optical properties make ZnO nanorod arrays promising for applications as transparent electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-306

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ü. Özgür, Ya. I. Alivov, C. Liu et al., A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301.

Google Scholar

[2] J. F. Wager, Transparent electronics, Science 300 (2003) 1245-1246.

Google Scholar

[3] W. Y. Liang, A. D. Yoffe, Transmission spectra of ZnO single crystals, Phys. Rev. Lett. 20 (1968) 59-62.

DOI: 10.1103/physrevlett.20.59

Google Scholar

[4] X. Jiang, F. L. Wang, M. K. Fung et al., Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting device, Appl. Phys. Lett. 83 (2003) 1875-1877.

DOI: 10.1063/1.1605805

Google Scholar

[5] O. Bamiduro, H. Mustafa, R. Mundle et al., Metal-like conductivity in transparent Al: ZnO films, Appl. Phys. Lett. 90 (2007) 252108.

DOI: 10.1063/1.2749836

Google Scholar

[6] F. A. Jenkins, H. E. White, Fundamentals of optics, fourth ed., New York: McGraw-Hill, 1976. pp.523-526.

Google Scholar

[7] F. Khan, Vandana, S. N. Singh et al., Sol-gel derived hydrogen annealed ZnO: Al films for silicon solar cell application, Sol. Energ. Mat. Sol. C. 100 (2012) 57-60.

DOI: 10.1016/j.solmat.2011.04.024

Google Scholar

[8] L. Song, S. Zhang, X. Wu et al., Controllable synthesis of hexagonal, bullet-like ZnO microstructures and nanorods arrays and their photocatalytic property, Ind. Eng. Chem. Res. 51 (2012) 4922-4926.

DOI: 10.1021/ie202253a

Google Scholar

[9] S. Xu, N. Adiga, S. Ba et al., Optimizing and improving the growth quality of ZnO nanowires arrays guided by statistical design of experiments, ACS Nano. 3 (2009) 1803-1812.

DOI: 10.1021/nn900523p

Google Scholar

[10] Z. R. Tian, J. A. Voigt, J. Liu et al., Biomimetic arrays of oriented helical ZnO nanorods and columns, J. Am. Chem. Soc. 124 (2002) 12954-12955.

DOI: 10.1021/ja0279545

Google Scholar

[11] J. H. Choy, E. S. Jang, J. H. Won et al., Soft solution route to directionally grown ZnO nanorods on Si wafer; room-temperature ultraviolet laser, Adv. Mater. 15 (2003) 1911-(1914).

DOI: 10.1002/adma.200305327

Google Scholar

[12] M. C. Akgun, Y. E. Kalay, H. E. Unalan, Hydrothermal zinc oxide nanowires growth using zinc acetate dehydrate salt, J. Mater. Res. 27 (2012) 1445-1451.

DOI: 10.1557/jmr.2012.92

Google Scholar

[13] N. Ye, C. C. Chen, Investigation of ZnO nanorods synthesized by a solvothermal method, using Al-doped ZnO seed films, Opt. Mater. 34 (2012) 753-756.

DOI: 10.1016/j.optmat.2011.10.013

Google Scholar

[14] B. D. Cullity, S. R. Stock, Elements of X-Ray diffraction, third ed., Prentice Hall, (2001).

Google Scholar

[15] J. G. Yu, X. J. Zhao, Q. N. Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method, Thin Solid Films 379 (2000) 7-14.

DOI: 10.1016/s0040-6090(00)01542-x

Google Scholar

[16] JS. Cho, S. Back, SH. Park et al., Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells, Sol. Energ. Mat. Sol. C. 102 (2012) 50-57.

DOI: 10.1016/j.solmat.2012.03.031

Google Scholar

[17] J. S. Cho, S. Baek, J. C. Lee, Surface texturing of sputtered ZnO: Al/Ag back reflectors for flexible silicon thin-film solar cells, Sol. Energ. Mat. Sol. C. 95 (2011) 1852-1858.

DOI: 10.1016/j.solmat.2011.02.007

Google Scholar

[18] P. Singh, A. K. Chawla, D. Kaur, R. Chandra, Effect of oxygen partial pressure on the structural and optical properties of sputter deposited ZnO nanocrystalline thin films, Mater. Lett. 61 (2007) 2050-(2053).

DOI: 10.1016/j.matlet.2006.08.013

Google Scholar