Fabrication of Silver Nanostructures by Microwave-Assisted Method

Article Preview

Abstract:

With polyvinyl pyrrolidone (PVP) as stabilizer and polyethylene glycol (PEG) as reducer, silver nanostructures were synthesized by microwave-assisted method. The morphology, size and crystal structure of silver (Ag) nanostructures were investigated by SEM and XRD. The results showed that the Ag nanostructures could change from nanoparticles to nanowires by introducing Cl-. The growth speed of nanowires could be controlled by changing the reaction power, thus Ag nanorods and Ag nanowires with different length could be obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Li L S, Hu J T, Yang W D, et al. Band gap variation of size and shape controlled colloidal CdSe quantum rods [J]. Nano Lett. 1 (2001) 348.

DOI: 10.1021/nl015559r

Google Scholar

[2] Dick L A, Mcfarland A D, Haynes C L, et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss[J]. J Phys Chem B. 106 (2002).

DOI: 10.1021/jp013638l

Google Scholar

[3] Lu Y, Liu G L, Lee L P. High-density silver nanoparticle film with temperature controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate [J]. Nano Lett. 5 (2005) 5.

DOI: 10.1021/nl048965u

Google Scholar

[4] Fleming J G, Lin S Y, El-Kady I, et al. All metallic three dimensional photonic crystals with a large infrared bandgap[J]. Nature. 417 (2002) 52.

DOI: 10.1038/417052a

Google Scholar

[5] Chandra Ramesh. Nanostruct Mater. 11 (1999) 1171-1179.

Google Scholar

[6] Su M, Li S Y, Dravid V P. Nicro cantilever resonance based DNA detection with nanopaticle probes[J]. Appl Phys Lett. 82 (2002) 3562.

Google Scholar

[7] Chen-hung, Yeh-sheng. Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles Colloids Surf A. 197 (2002) 133-139.

DOI: 10.1016/s0927-7757(01)00854-8

Google Scholar

[8] Khanna PK, Subbarao VVVS. Nanosized silver powder via reduction of silver nirate by sodium form aldehydesulfoxylate in acidic pH medium. Materials Letters. 57 (2003) 2242-2245.

DOI: 10.1016/s0167-577x(02)01203-x

Google Scholar

[9] Wang XW, Wang NZ, Zhang OZ, et al. Tissue deposition of silver following topical use of silver sulfadiazine in extensive burns. Burns, 11 (1985) 197-201.

DOI: 10.1016/0305-4179(85)90070-1

Google Scholar

[10] Coombs CJ, Wan AT, Masterton JP, etal. Do burn patients have a silver lining. Burns. 18 (1992) 179-184.

DOI: 10.1016/0305-4179(92)90067-5

Google Scholar

[11] McCormick ML, Sanghvi HC, Kinzie B, et al. Preventing postpartum hemorrhage in low-resource settings. Int J Gynaecol Obstet. 77 (2002) 267-275.

DOI: 10.1016/s0020-7292(02)00020-6

Google Scholar

[12] Hussain SM , Hess KL , Gearhart JM , et al . In vit ro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 19 (2005) 975.

DOI: 10.1016/j.tiv.2005.06.034

Google Scholar

[13] Jansson G, Harms2Ringdahl M. Stimulating effects of mercuric and silver ions on the superoxide anion production in human polymorphonuclear leukocytes. Free Radic Res Commun. 18 (1993) 87.

DOI: 10.3109/10715769309147345

Google Scholar

[14] Jinglong Tang, Tingfei Xi. et al., Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats [J]. J Nanosci Nanotech. 9 (2009) 1-9.

Google Scholar

[15] S. Komarneni, D. S. Li, B. Newalkar, H. Katsuki, and A. S. Bhalla. Microwave-Polyol Process for Pt and Ag Nanoparticles, Langmuir. 18 (2002) 5959-5962.

DOI: 10.1021/la025741n

Google Scholar

[16] M. Larhed, A. Hallgerg. Microwave-Promoted Palladium-Catalyzed Coupling Reactions, J. Org. Chem. 16 (1996) 9582-9584.

DOI: 10.1021/jo9612990

Google Scholar

[17] A. Graff, D. Wagner, H. Ditlbacher, and U Kreibig, Silver nanowires, Eur. Phys. J.D. 34 (2005) 263-269.

DOI: 10.1140/epjd/e2005-00108-7

Google Scholar

[18] W. C. Zhang, X. L. Wu, H. T. Chen, et al, Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method, Acta Mater. 56 (2008) 2508-2513.

DOI: 10.1016/j.actamat.2008.01.043

Google Scholar

[19] A. Henglein, M. Giersig, Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate, J. Phys. Chem. B. 103 (1999) 9533-9539.

DOI: 10.1021/jp9925334

Google Scholar

[20] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia. Uniform Silver Nanowires Synthesis by Reducing AgNO3, Chem. Mater. 14 (2002) 4736-4745.

DOI: 10.1021/cm020587b

Google Scholar

[21] L. D. Marks. Experimental studies of small particle structures, Rep. Prog. Phys. 57 (1994) 603-649.

DOI: 10.1088/0034-4885/57/6/002

Google Scholar

[22] B. J. Wiley, Y. G. Sun, B. Mayers, Y. N. Xia. Shape-controlled synthesis of metal nanostructures: the case of silver, Chem. Eur. J. 11 (2005) 454-463.

DOI: 10.1002/chem.200400927

Google Scholar

[23] F. K. Liu, P. W. Huang, Y. C. Chang, F. H. Ko, T. C. Chu, Microwave-assisted synthesis of silver nanorods. J. Mater. Res. 19 (2004) 469-473.

DOI: 10.1557/jmr.2004.19.2.469

Google Scholar

[24] Y. Sun, B. Gates, B. T. Mayers, Y. Xia. Crystalline silver nanowires by soft solution processing. Nano letters. 2 (2002) 165-168.

DOI: 10.1021/nl010093y

Google Scholar