[1]
Q.G. Wang, Metall. Mater. Trans. A 35 (2004) 2707–2718.
Google Scholar
[2]
I. Gutierrez-Urrutia, M.A. Munoz-Morris, D.G. Morris, Acta Mater. 55 (2007): 1319–1330.
Google Scholar
[3]
Mo lina R, Leghissa M, Leghissa. New developments in high performance cylinder heads: applicat ion o f LHIP and split cylinder head concept [ J] . Metallurgical Science and Technology, 2004, 22( 2) : 1-8.
Google Scholar
[4]
Feicus F J. Optimization of Al-Si cast alloys for cylinder head applications [J]. AFS Transactions, 1998, 106 : 225-231.
Google Scholar
[5]
A.W. Warren, Y.B. Guo, S.C. Chen. Massive parallel laser shock peening: Simulation, analysis, and validation [J]. International Journal of Fatigue, 2008, 30 : 188-197.
DOI: 10.1016/j.ijfatigue.2007.01.033
Google Scholar
[6]
J.Z. Lu, K.Y. Luo, Y.K. Zhang. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Materialia, 2010, 58(11): 3984-3994.
DOI: 10.1016/j.actamat.2010.03.026
Google Scholar
[7]
J.Z. Lu, K.Y. Luo, Y.K. Zhang. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel (Ms. No. A-10-666). Acta Materialia, 2010, (SCI, In press).
DOI: 10.1016/j.actamat.2010.06.010
Google Scholar
[8]
Altenberger, Igor, Nalla, Ravi K, Sano, Yuji. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 degrees C. INTERNATIONAL JOURNAL OF FATIGUE, 2012, 44: 292-302.
DOI: 10.1016/j.ijfatigue.2012.03.008
Google Scholar
[9]
X.D. Ren, T. Zhang, Y.K. Zhang. Mechanical properties and residual stresses changing on 00Cr12 alloy bynanoseconds laser shock processing at high temperatures. Materials Science and Engineering A, 2011, 528: 1949-(1953).
DOI: 10.1016/j.msea.2010.10.098
Google Scholar
[10]
Zhong Zhou, Amrinder S. Gill, Dong Qian. A finite element study of thermal relaxation of residual stress in laser shock. International Journal of Impact Engineering, 2011, 38: 590-596.
DOI: 10.1016/j.ijimpeng.2011.02.006
Google Scholar
[11]
I. Nikitin, I. Altenberger. Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600°C. Materials Science and Engineering A, 2007, 465: 176-182.
DOI: 10.1016/j.msea.2007.02.004
Google Scholar
[12]
K. Ding, L. Ye, J. Mater. Process. Technol. 178 (2006) 162-169.
Google Scholar
[13]
U. Sanchez-Santana, C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, J. Porro, M. Morales, Wear 260 (2006) 847-854.
DOI: 10.1016/j.wear.2005.04.014
Google Scholar
[14]
P. Juijerm, I. Altenberger. Residual stress relaxation of deep-rolled Al-Mg-Si-Cu alloy during cyclic loading at elevated temperatures. Scripta Materialia, 2006, 55: 1111-1114.
DOI: 10.1016/j.scriptamat.2006.08.047
Google Scholar
[15]
Zhong Zhou, Amrinder S. Gill, Dong Qian, S.R. Mannava, Kristina Langer, Youhai Wen. A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy. International Journal of Impact Engineering, 2011, 38, 590-596.
DOI: 10.1016/j.ijimpeng.2011.02.006
Google Scholar