[1]
Z. Averbuch and V. A. Zheludev: A new family of spline-based biorthogonal wavelet transforms and their applications to image compression, IEEE Trans. Image Process. 13 (2004), 993-1007.
DOI: 10.1109/tip.2004.827229
Google Scholar
[2]
Cohen and I. Daubechies: A new technique to estimate the regularity of refinable funtions, Rev. Mat. Iberoamericana. 12(1996), 527-591.
DOI: 10.4171/rmi/207
Google Scholar
[3]
W. Dahmen: Wavelet and multiscale methods for operator equations, ACTA Numer. 6 (1997), 55-228.
Google Scholar
[4]
Daubechies: Ten Lectues on Wavelets, CMBS-NSF Series in Applied Mathematics, SIAM. Philadelphia, (1992).
Google Scholar
[5]
C. K. Chui and J. A. Lian: A study of orthogonal multi-wavelets, Appl. Numer. Math. 20 (1996), 273-298.
Google Scholar
[6]
B. Han and R. Q. Jia: Characterization of Riesz bases of wavelets generated from multiresolution analysis, Appl. Comput. Harmon. Anal. 23 (2007), 321-345.
DOI: 10.1016/j.acha.2007.02.001
Google Scholar
[7]
R. Q. Jia: Convergence of vector subdivision schemes and construction of biorthogonal multip wavelets, in: K. S. Lau(ed. ), Advance in wavelets. Singapore: Springer-Verlag, (1999) 199-227.
Google Scholar
[8]
S. Li and Z. S. Liu: Riesz Multiwavelet Bases Generated by Vector Riefinement Equation, Sci. China Ser. A, 51(3), (2009).
DOI: 10.1007/s11425-008-0118-8
Google Scholar
[9]
R. Q. Jia, J. Z. Wang and D. X. Zhou: Compactly supported wavelet bases for Sobolev spaces, Appl. Comput. Harmon. Anal. 15(2003) 224-241.
DOI: 10.1016/j.acha.2003.08.003
Google Scholar
[10]
R. L. Long, D. R . Chen: Biorthogonal wavelet bases on Appl. Comput. Harmon. Anal. 2 (1995), 230-242.
Google Scholar