[1]
J.W. Raich, W.H. Schlesinger, The globle carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B. 44 (1992) 81-99.
DOI: 10.1034/j.1600-0889.1992.t01-1-00001.x
Google Scholar
[2]
R.K. Dixon, S. Brown, R.A. Houghton, A.M. Solomon, M.C. Trexler, J. Wisniewski, Carbon pools and flux of global forest ecosystem. Science 263 (1994) 185-190.
DOI: 10.1126/science.263.5144.185
Google Scholar
[3]
E.A. Davidson, I.A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440 (2006) 165-173.
DOI: 10.1038/nature04514
Google Scholar
[4]
C. Leuschner, G. Moser, C. Bertsch, M. Roderstein, D. Hertel, Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 8 (2007) 219-230.
DOI: 10.1016/j.baae.2006.02.004
Google Scholar
[5]
M. Schawe, S. Glatzel, G. Gerold, Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: Podzolization vs. hydromorphy. Catena 69 (2007) 83-90.
DOI: 10.1016/j.catena.2006.04.023
Google Scholar
[6]
C.T. Garten, W.M. Post, P.J. Hanson, L.W. Cooper, Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry 45 (1999) 115-145.
DOI: 10.1007/bf01106778
Google Scholar
[7]
J.W. Raich, A.E. Russell, K. Kitayama, W.J. Parton, P.M. Vitousek, Temperature influences carbon accumulation in moist tropical forests. Ecology (2006) 87, 76-87.
DOI: 10.1890/05-0023
Google Scholar
[8]
A.R. Townsend, P.M. Vitousek, S.E. Trumbore, Soil organic-matter dynamics along gradients in temperature and land-use on the island of Hawaii. Ecology 76 (1995) 721-733.
DOI: 10.2307/1939339
Google Scholar
[9]
M. Beniston, Climatic change in mountain regions: A review of possible impacts. Climatic Change 59 (2003) 5-31.
DOI: 10.1007/978-94-015-1252-7_2
Google Scholar
[10]
M. Zhang, X.K. Zhang, W.J. Liang, Y. Jiang, G.H. Dai, X.G. Wang, S.J. Han, Distribution of Soil Organic Carbon Fractions Along the Altitudinal Gradient in Changbai Mountain, China. Pedosphere 21 (2011) 615-620.
DOI: 10.1016/s1002-0160(11)60163-x
Google Scholar
[11]
C.T. Garten, P.J. Hanson, Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136 (2006) 342-352.
DOI: 10.1016/j.geoderma.2006.03.049
Google Scholar
[12]
A. Schindlbacher, C. De-Gonzalo, E. Diaz-Pines, Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. J Geophys. Res 115 (2010) 10.
DOI: 10.1029/2009jg001191
Google Scholar
[13]
M. Zimmermann, P. Meir, M.I. Bird, Y. Malhi, A.J.Q. Ccahuana, Climate dependence of heterotrophic soil respiration from a soil-translocation experiment along a 3000 m tropical forest altitudinal gradient. Eur. J Soil Sci 60 (2009) 895-906.
DOI: 10.1111/j.1365-2389.2009.01175.x
Google Scholar
[14]
C. Korner, The use of 'altitude' in ecological research. Trends Ecol. Evol. 22 (2007) 569-574.
Google Scholar
[15]
B.A. Zhu, X.P. Wang, J.Y. Fang, S.L. Piao, H.H. Shen, S.Q. Zhao, C.H. Peng, Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 123 (2010) 439-452.
DOI: 10.1007/s10265-009-0301-1
Google Scholar