The Spectrum of a Bent Fiber Fabry-Perot Interferometer under Small Variations of the Refractive Index of the Environment

Article Preview

Abstract:

The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry–Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0,71 and 0,077, respectively, and enable changes in the refractive index of the ambient medium down to 5∙10–6 to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

363-367

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Born, M., Wolf, E., [Principles of Optics, 7th ed. ], Cambridge: Cambridge University Press, (2005).

Google Scholar

[2] Ioffe, B.V., [Refractometric Methods in Chemistry, 3rd ed. ], Leningrad: Khimiya, (1983).

Google Scholar

[3] Homola, J., Yee, S.S., Gauglitz, G., Surface plasmon resonance sensors: review, Sens. Actuators B 54, 3-15 (1999).

DOI: 10.1016/s0925-4005(98)00321-9

Google Scholar

[4] Kuzyk, M.G., [Polymer Fiber Optics: Materials, Physics, and Applications], Boca Raton: CRC Press, (2006).

Google Scholar

[5] Liang, W., Huang, Y.Y., Xu, Y., Lee R.K., Yariv A., Highly sensitive fiber Bragg grating refractive index sensors, Appl. Phys. Lett., 86, 151122 (2005).

DOI: 10.1063/1.1904716

Google Scholar

[6] Villatoro, J., Monzón-Hernández, D. J., Low-cost optical fiber refractive-index sensor based on core diameter mismatch, Lightwave Technol., 24, 1409-1413 (2006).

DOI: 10.1109/jlt.2005.863246

Google Scholar

[7] Lu, P., Men, L., Sooley, K., Chen, Q., Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature, Appl. Phys. Lett., 94, 131110 (2009).

DOI: 10.1063/1.3115029

Google Scholar

[8] Wei, T., Han, Y., Li, Y., Tsai, H. -L., Xiao, H., Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement, Opt. Express, 16, 5764-5769 (2008).

DOI: 10.1364/oe.16.005764

Google Scholar

[9] Vasil'ev, S.A., Dianov, E.M., Kurkov, A.S., Photoinduced in-fibre refractive-index gratings for core-cladding mode coupling, Quantum Electron., 27, 146 (1997).

DOI: 10.1070/qe1997v027n02abeh000893

Google Scholar

[10] Wang, P., Semenova, Yu., Wu, Q., Farrell, G., Ti, Yu., Zheng, J., Macrobending single-mode fiber-based refractometer, Appl. Opt., 48, 31 (2009).

DOI: 10.1364/ao.48.006044

Google Scholar

[11] Faustini, L., Martini, G.J., Bend loss in single-mode fibers, Lightwave Technol., 15, 671 (1997).

DOI: 10.1109/50.566689

Google Scholar