Development of Multiwalled Carbon Nanotube Based Electrochemical Sensor for Reactive Azo Dyes

Article Preview

Abstract:

Two reactive azo dyes Reactive yellow 84 (RY84) and Reactive Red 120 (RR120) were investigated voltammetrically using plain glassy carbon electrode (GCE) and multiwalled carbon nanotube modified GCE (MWCNT/GCE). Influence of pH, scan rate and concentration on voltammograms were studied. The irreversible oxidation process observed for both dyes was adsorption controlled. The surface characterization of the modified electrode in the absence and presence of dyes was done using scanning electron microscopy (SEM). A systematic study of the experimental parameters that affects differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived. Under optimized conditions, stripping voltammetry procedure was developed for the determination of reactive dyes. MWCNT/GCE seems to present better responses than plain GCE and the limit of detection (LOD) was 0.6 μg mL-1 for RY84 and 0.3μg mL-1 for RR120 on this modified system. Suitability of the differential pulse stripping voltammetric method using the developed Multiwalled carbon nanotube based sensor, for the trace determination of these textile dyes in real samples was also realized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

321-325

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Kutner, J. Wang, M. L'her, R.P. Buck, Pure & Appl. Chem. 70 (1998) 1301-1318.

Google Scholar

[2] S. Iijima, T. Ichihashi, Nature 363 (1993) 603-605.

Google Scholar

[3] Q. Zhao, Z. Gan, Q. Zhuang, Electroanalysis 14 (2002) 1609-1613.

Google Scholar

[4] J. Wang, Electroanalysis 17 (2005) 7-14.

Google Scholar

[5] J. Wang, M. Musameh, Y. Lin, J. Am. Chem. Soc. 125 (2003) 2408-2409.

Google Scholar

[6] D.T. Sponza, M. Isik, Proc. Biochem. 40 (2005) 2735-2744.

Google Scholar

[7] Y. Tonogai, Y. Ito, M. Iwaida, M. Tati, Y. Cse, T. Sato, J. Toxicol. Sci. 4 (1979) 211-219.

Google Scholar

[8] G.Z. Qian, Dye chemistry. Shanghai Jiaotong University Press, Shanghai, China, (1988).

Google Scholar

[9] C.C.I. Guaratini , M.V.B. Zanoni , A.G. Fogg, Microchemical Journal 71 (2002) 65-72.

Google Scholar

[10] C.C.I. Guaratini , M.V.B. Zanoni , A.G. Fogg, Electroanalysis 13 (2001) 1535-1543.

Google Scholar

[11] C.C.I. Guaratini , M.V.B. Zanoni , A.G. Fogg, Dyes and Pigments 50 (2001) 211-221.

Google Scholar

[12] J. Barek , A.G. Fogg, J.C. Moreira, M.V.B. Zanoni, J. Zima, Anal. Chimi. Acta 320 (1996) 31-42.

Google Scholar

[13] A.G. Fogg, M.V.B. Zanoni, A.R.H.M. Yusoff, R. Ahmad, J. Barek , J. Zima, Anal. Chimi. Acta 362 (1998) 235-240.

Google Scholar

[14] Y.Q. Li, Y.J. Guo, X.F. Li, J.H. Pan, Dyes and Pigments 74 (2007) 67-72.

Google Scholar

[15] P. Manisankar, PL. Abirama Sundari, R. Sasikumar, SP. Palaniappan, Talanta 76 (2008) 1022-1028.

DOI: 10.1016/j.talanta.2008.04.056

Google Scholar

[16] P. Manisankar, PL. Abirama Sundari, R. Sasikumar, D. JestinRoy, Electroanalysis 20 (2008) 2076-(2083).

Google Scholar

[17] P. Manisankar, G. Selvanathan, C. Vedhi, Talanta 68 (2006) 686-692.

DOI: 10.1016/j.talanta.2005.05.021

Google Scholar

[18] P. Manisankar, G. Selvanathan, C. Vedhi, Appl. Clay Sci. 29 (2005) 249-257.

Google Scholar

[19] M.V.B. Zanoni, A.G. Fogg, J. Barek and J. Zima, Anal. Chim. Acta 315 (1995) 41-54.

Google Scholar