Molecular Dynamics Optimization of a Computational Model of TACE and its Substrate Peptide

Article Preview

Abstract:

Tumor necrosis factor-alpha converting enzyme (TACE) is a very important membrane-bound proteinase, and it can cut a lot of membrane proteins to their released form. Many of the substrates of TACE are critical protein factors, such as IL-6, TNF-alpha, EGF receptor. Therefore, TACE has been a hopeful drug targets in many diseases. However, selective inhibitors against TACE with high specificity has yet been developed successfully, partly due to the lack of the understanding of the TACE substrate interaction details. To solve this problem, here we build a computational complex model of the TACE catalytic domain and its substrate peptide using the protein design software Rosetta. To further optimize the complex model, molecular dynamics analysis was performed in NAMD with explicit water molecules. The result showed that our complex model is a pretty reliable intermediate model for TACE and its peptide substrate. This complex model could be very useful for further study of the substrate specificity and selectivity of TACE.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

April 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Li, Inhibitory role of TACE/ADAM17 cytotail in protein ectodomain shedding, WJBC, vol. 2, no. 11, p.246, (2011).

DOI: 10.4331/wjbc.v2.i11.246

Google Scholar

[2] X. Li, L. Pérez, Z. Pan, and H. Fan, The transmembrane domain of TACE regulates protein ectodomain shedding, Cell Res, vol. 17, no. 12, p.985–998, Dec. (2007).

DOI: 10.1038/cr.2007.98

Google Scholar

[3] P. Saftig and K. Reiss, The A Disintegrin And Metalloproteases' ADAM10 and ADAM17: novel drug targets with therapeutic potential, Eur. J. Cell Biol., vol. 90, no. 6, p.527–535, Jun. (2011).

DOI: 10.1016/j.ejcb.2010.11.005

Google Scholar

[4] K. P. Fong, C. Barry, A. N. Tran, E. A. Traxler, K. M. Wannemacher, H. -Y. Tang, K. D. Speicher, I. A. Blair, D. W. Speicher, T. Grosser, and L. F. Brass, Deciphering the human platelet sheddome., Blood, vol. 117, no. 1, pp. e15–26, Jan. (2011).

DOI: 10.1182/blood-2010-05-283838

Google Scholar

[5] S. F. Lichtenthaler, Sheddase Gets Guidance, Science, vol. 335, no. 6065, p.179–180, Jan. (2012).

DOI: 10.1126/science.1216815

Google Scholar

[6] J. Scheller, A. Chalaris, C. Garbers, and S. Rose-John, ADAM17: a molecular switch to control inflammation and tissue regeneration., Trends Immunol., vol. 32, no. 8, p.380–387, Aug. (2011).

DOI: 10.1016/j.it.2011.05.005

Google Scholar

[7] A. Baumgart, S. Seidl, P. Vlachou, L. Michel, N. Mitova, N. Schatz, K. Specht, I. Koch, T. Schuster, R. Grundler, M. Kremer, F. Fend, J. T. Siveke, C. Peschel, J. Duyster, and T. Dechow, ADAM17 Regulates Epidermal Growth Factor Receptor Expression through the Activation of Notch1 in Non-Small Cell Lung Cancer, Cancer Research, vol. 70, no. 13, p.5368–5378, Jun. (2010).

DOI: 10.1158/0008-5472.can-09-3763

Google Scholar

[8] M. Gooz, ADAM-17: the enzyme that does it all, Critical Reviews in Biochemistry and Molecular Biology, vol. 45, no. 2, p.146–169, Apr. (2010).

DOI: 10.3109/10409231003628015

Google Scholar

[9] J. Arribas and C. Esselens, ADAM17 as a therapeutic target in multiple diseases., Curr. Pharm. Des., vol. 15, no. 20, p.2319–2335, (2009).

DOI: 10.2174/138161209788682398

Google Scholar

[10] P. E. Gonzales, A. Solomon, A. B. Miller, M. A. Leesnitzer, I. Sagi, and M. E. Milla, Inhibition of the tumor necrosis factor-alpha-converting enzyme by its pro domain., Journal of Biological Chemistry, vol. 279, no. 30, p.31638–31645, Jul. (2004).

DOI: 10.1074/jbc.m401311200

Google Scholar

[11] S. DasGupta, P. R. Murumkar, R. Giridhar, and M. R. Yadav, Current perspective of TACE inhibitors: A review, Bioorganic & Medicinal Chemistry, vol. 17, no. 2, p.444–459, Jan. (2009).

DOI: 10.1016/j.bmc.2008.11.067

Google Scholar

[12] I. H. Tarner, U. Müller-Ladner, and S. Gay, Emerging targets of biologic therapies for rheumatoid arthritis, Nat Clin Pract Rheumatol, vol. 3, no. 6, p.336–345, Jun. (2007).

DOI: 10.1038/ncprheum0506

Google Scholar

[13] K. Maskos, C. Fernandez-Catalan, R. Huber, G. P. Bourenkov, H. Bartunik, G. A. Ellestad, P. Reddy, M. F. Wolfson, C. T. Rauch, and B. J. Castner, Crystal structure of the catalytic domain of human tumor necrosis factor-α-converting enzyme, Proc. Natl. Acad. Sci. U.S.A., vol. 95, no. 7, p.3408, (1998).

DOI: 10.1073/pnas.95.7.3408

Google Scholar

[14] B. Raveh, N. London, L. Zimmerman, and O. Schueler-Furman, Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors., PLoS ONE, vol. 6, no. 4, p. e18934, (2011).

DOI: 10.1371/journal.pone.0018934

Google Scholar

[15] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with NAMD., J. Comput. Chem., vol. 26, no. 16, p.1781–1802, Dec. (2005).

DOI: 10.1002/jcc.20289

Google Scholar

[16] W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics., J Mol Graph, vol. 14, no. 1, p.33–8– 27–8, Feb. (1996).

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar