Atomic Diffusion in the (001) Surface of Cu3Ag Ordered Alloy

Article Preview

Abstract:

Both the formation and migration energies of a single vacancy migrating intra- and inter-layer of the CuAg-terminated (001) surface or Cu-terminated (001) surface for Cu3Ag ordered alloy have been calculated by using the modified analytical embedded-atom method (MAEAM) with the molecular dynamics (MD) method. The surface effects on the vacancy formation and migration are all down to 6L for the CuAg-terminated (001) surface, but is respectively down to 5L and 6L for the Cu-terminated (001) surface. The vacancy energetically formed in the 1L. There is a vacancy aggregation tendency in the 1L as well as in the bulk the Cu vacancy is easier to be formed than the Ag vacancy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

April 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Ratsch, A. Zangwill, P. Smilauer and D.D. Vedensky. Phys. Rev. Lett. Vol. 72 (1994) P. 3194.

Google Scholar

[2] S. Mrowec and Z. Grzesik. J. Phys. Chem. Solids Vol. 65 (2004) P. 1651.

Google Scholar

[3] J. de la Figuera, C.B. Carter, N.C. Bartelt and R.Q. Hwang. Surf. Sci. Vol. 531 (2003) P. 29.

Google Scholar

[4] M.J. Rost, S.B. van Albada and J.W.M. Frenken, Surf. Sci. Vol. 518 (2002) P. 21.

Google Scholar

[5] Y. Kraftmakher. Phys. Report Vol. 299 (1998) P. 79.

Google Scholar

[6] Y.W. Yen, C.Y. Lee, D.P. Huang and J.W. Su. J. Alloys Compd. Vol. 466 (2008) P. 383.

Google Scholar

[7] N. Torii, T. Shioiri and R. Inadu. Physica C. Vol. 463-465 (2007) P. 841.

Google Scholar

[8] J. Freudenberger, H.J. Klaub, K. Heinze, A. Gaganove, M. Schaper and L. Schultz. Int. J. Fatigue. Vol. 30 (2008) P. 437.

Google Scholar

[9] A. Gaganov, J. Freudenberger, W. Grünberger and L. Schultz. Zeitschrift für Metallkunde, Vol. 95 (2004) P. 425.

Google Scholar

[10] A. Gaganov, J. Freudenberger, E. Botcharova and L. Schultz. Mat. Sci. Eng. A Vol. 437 (2006) P. 313.

Google Scholar

[11] B.W. Zhang and Y.F. Ouyan. Phys. Rev. B Vol. 48 (1993) P. 3022.

Google Scholar

[12] B.W. Zhang, Y.F. Ouyan, S.Z. Liao and Z.P. Jin. Physica B Vol. 262 (1999) P. 218.

Google Scholar

[13] W.Y. Hu, B.W. Zhang, B.Y. Huang, F. Gao and D. Bacon. J. Phys. Vol. 13 (2001) P. 1193.

Google Scholar

[14] R.A. Johnson. Phys. Rev. B Vol. 37 (1988) P. 3924.

Google Scholar

[15] D.J. Oh and R.A. Johnson. J. Mater. Res. Vol. 3 (1988) P. 471.

Google Scholar

[16] R.A. Johnson and D.J. Oh. J. Mater. Res. Vol. 4 (1989) P. 1195.

Google Scholar

[17] R.A. Johnson. Phys. Rev. B Vol. 41 (1990) P. 9717.

Google Scholar

[18] Y.N. Wen, J.M. Zhang and K.W. Xu. Colloid. Surface. A Vol. 304 (2007) P. 67.

Google Scholar

[19] Y.N. Wen, J.M. Zhang and K.W. Xu. Applied Surface Science Vol. 253 (2007) P. 8620.

Google Scholar

[20] Y.N. Wen and J.M. Zhang. Solid State Commun. Vol. 144 (2007) P. 163.

Google Scholar

[21] Y.N. Wen and J.M. Zhang. Comput. Mater. Sci. Vol. 42 (2007) P. 281.

Google Scholar

[22] X.M. Wei, J.M. Zhang and K.W. Xu. Appl. Surf. Sci. Vol. 252 (2006) P. 7331.

Google Scholar

[23] X.M. Wei, J.M. Zhang and K.W. Xu. Appl. Surf. Sci. Vol. 253 (2007) P. 4307.

Google Scholar

[24] W.Y. Hu, B.W. Zhang, X.L. Shu and B.Y. Huang. J. Alloys Compd. Vol. 287 (1999) P. 159.

Google Scholar

[25] C.S. Barrett and T.B. Massalski, Structure of Metals (Pergamon Press, Oxford, 1980), 3rd. P. 629.

Google Scholar

[26] C. Kittle, Introduction to Solid Physics (Wiley & Sons Inc., New York, 1976) 6th, P. 74.

Google Scholar

[27] E.A. Barandes, Smithells Metals Reference Book (Butterworth, Heinemann, 1983), 6th. P. 15.

Google Scholar

[28] R.A. Johnson. Phys. Rev. B Vol. 39 (1989) p.12554.

Google Scholar

[29] J.R. Beeler Jr., Radiation Effects Computer Experiments (North-Holland, New York, 1983).

Google Scholar