Atomic Simulation of Size Effect and Surface Properties of Aluminum Nanoparticles

Article Preview

Abstract:

Here, modified analytic embedded atom method (MAEAM) has been utilized to simulate size effect and surface properties of aluminum (Al) nanoparticles. According to the simulation results, we can find that lattice parameter and excess stored energy are size dependent. The simulated excess stored energy ranges from 2.12 to 57.61 kJ/mol, which is in the same order of magnitude with experiment results; surface energy of Al nanoparticles ranges from 0.78 to 1.10 J/m2, which is not invariant but size related. Furthermore, non-uniform lattice distortion has been observed in Al nanoparticles, and mainly concentrates in the first and second shell of surface layers. Theoretical research based on our simulation results provides a novel method to predict excess stored energy of metallic nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-14

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhou, W. Song, X. Zeng, et al, Quantitative X-ray Rietveld analysis of metallic aluminum content in nano-aluminum powders, Mater Lett 67 (2012) 177-179.

DOI: 10.1016/j.matlet.2011.09.051

Google Scholar

[2] R. Shende,S. Subramanian,S. Hasan, et al, Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al-Nanoparticles, Propell. Explos. Pyrot. 33 (2008) 122-130.

DOI: 10.1002/prep.200800212

Google Scholar

[3] V. I. Levitas, Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism, Combust. Flame 156 (2009) 543-546.

DOI: 10.1016/j.combustflame.2008.11.006

Google Scholar

[4] Z. H. Li, D. Bhatt, N. E. Schultz, et al, Free Energies of Formation of Metal Clusters and Nanoparticles from Molecular Simulations: Aln with n = 2-60, J. Phys. Chem. C 111 (2007) 16227-16242.

DOI: 10.1021/jp073559v

Google Scholar

[5] Z. H. Li, A. W. Jasper, D. G. Truhlar, Structures, Rugged Energetic Landscapes, and Nanothermodynamics of Aln (2≤n≤ 65) Particles, J. AM. CHEM. SOC. 129 (2007) 14899-14910.

DOI: 10.1021/ja073129i

Google Scholar

[6] B. Medasani, I. Vasiliev, Computational study of the surface properties of aluminum nanoparticles, Surf. Sci. 603 (2009) 2042-(2046).

DOI: 10.1016/j.susc.2009.03.025

Google Scholar

[7] W. J. Huang, R. Sun, J. Tao, et al, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction, Nat. Mater. 7 (2008) 308-313.

DOI: 10.1038/nmat2132

Google Scholar

[8] J. Woltersdorf, A. S. Nepijko, E. Pippel, Dependence of Lattice Parameters of Small Particles on the Size of the Nuclei, Surf. Sci. 106 (1981) 64-69.

DOI: 10.1016/0039-6028(81)90182-5

Google Scholar

[9] W. H. Qi, M. P. Wang, Size and shape dependent lattice parameters of metallic nanoparticles, J. Nanopart. Res. 7 (2005) 51-57.

DOI: 10.1007/s11051-004-7771-9

Google Scholar

[10] Q. Jiang, L. H. Liang, D. S. Zhao, Lattice Contraction and Surface Stress of fcc Nanocrystals, J. Phys. Chem. B 105 (2001) 6275-6277.

DOI: 10.1021/jp010995n

Google Scholar

[11] H. Q. Deng, W. Y. Hu, X. L. Shu, et al, Analytic embedded-atom method approach to studying the surface segregation of Al–Mg alloys, Appl. Surf. Sci. 221 (2004) 408-414.

DOI: 10.1016/s0169-4332(03)00946-2

Google Scholar

[12] F. S. Liu, W. Y. Hu, H. Q. Deng, et al, Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface, Appl. Surf. Sci. 255 (2009) 8883-8889.

DOI: 10.1016/j.apsusc.2009.06.078

Google Scholar

[13] F. Fang, X. L. Shu, H. Q. Deng, et al, Modified analytic EAM potentials for the binary immiscible alloy systems, Mater. Sci. Eng. A 355 (2003) 357-367.

DOI: 10.1016/s0921-5093(03)00102-3

Google Scholar

[14] G. S. Yun, Y. S. Kwon, J. S. Kim, et al, Excess energy in the electroexplosive nanopowders, Res. Chem. Intermed, 36 (2010) 881-887.

DOI: 10.1007/s11164-010-0196-4

Google Scholar

[15] A. Kiejna, J. Peisert, P. Scharoch, Quantum-size effect in thin Al(110) slabs, Surf. Sci. 432 (1999) 54-56.

DOI: 10.1016/s0039-6028(99)00510-5

Google Scholar