Characterization of Contact Resistance between Carbon Nanotubes Film and Metal Electrodes

Article Preview

Abstract:

Carbon nanotube has attracted great research attentions due to its outstanding electrical, physical, mechanical, chemical properties. Based on its excellent properties, the carbon nanotube is promising nanoscale material for novel electrical, mechanical, chemical, and biological devices and sensors. However, it is very difficult to control the structure of carbon nanotube during synthesis. A carbon nanotubes film has 3 dimensional structures of interwoven carbon nanotubes as well as unique properties such as transparency, flexibility and good electrical conductivity. More importantly, the properties of carbon nanotubes are ensemble averaged in this formation. In this research, we study the contact resistance between carbon nanotubes film and metal electrode. For most of electrical devices using carbon nanotubes film, it is necessary to have metal electrodes on the film for current path. A resistance at the contact lowers the electrical efficiencies of the devices. Therefore, it is important to measure and characterize the contact resistance and lower it for better efficiencies. The device demonstrated in this study using classical technique for metal contacts provides relatively reliable contact resistance measurements for carbon nanotubes film applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-241

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S. J. Wind and P. Avouris. Carbon nanotube electronics. Ieee Trans. Nanotechnol. 2002, 1 (4): 184-189.

DOI: 10.1109/tnano.2002.807390

Google Scholar

[2] A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom and H. Dai. High-[kappa] dielectrics for advanced carbon-nanotube transistors and logic gates. Nat Mater 2002, 1 (4): 241-246.

DOI: 10.1038/nmat769

Google Scholar

[3] A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424 (6949): 654-657.

DOI: 10.1038/nature01797

Google Scholar

[4] C. M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins and R. Martel. Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 2006, 88 (18): 183104.

DOI: 10.1063/1.2199461

Google Scholar

[5] K. Bradley, J. C. P. Gabriel and G. Gruner. Flexible nanotube electronics. Nano Lett. 2003, 3 (10): 1353-1355.

Google Scholar

[6] E. S. Snow, J. P. Novak, P. M. Campbell and D. Park. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82 (13): 2145-2147.

DOI: 10.1063/1.1564291

Google Scholar

[7] T. Ozel, A. Gaur, J. A. Rogers and M. Shim. Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett. 2005, 5 (5): 905-911.

DOI: 10.1021/nl0503781

Google Scholar

[8] E. Bekyarova, M. E. Itkis, N. Cabrera, B. Zhao, A. P. Yu, J. B. Gao and R. C. Haddon. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005, 127 (16): 5990-5995.

DOI: 10.1021/ja043153l

Google Scholar

[9] D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363 (6430): 605-607.

DOI: 10.1038/363605a0

Google Scholar

[10] A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom and H. Dai. High- k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1 (4): 241-246.

DOI: 10.1038/nmat769

Google Scholar

[11] Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi and A. Javey. Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Lett. (2007).

DOI: 10.1021/nl071626r

Google Scholar

[12] A. Javey, Q. Wang, A. Ural, Y. M. Li and H. J. Dai. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2 (9): 929-932.

DOI: 10.1021/nl025647r

Google Scholar

[13] A. Javey, S. Nam, R. S. Friedman, H. Yan and C. M. Lieber. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7 (3): 773-777.

DOI: 10.1021/nl063056l

Google Scholar

[14] Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi and H. J. Dai. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4 (2): 317-321.

DOI: 10.1021/nl035097c

Google Scholar

[15] Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler. Transparent, conductive carbon nanotube films. Science 2004, 305 (5688): 1273-1276.

DOI: 10.1126/science.1101243

Google Scholar

[16] A. Behnam, Y. Choi, L. Noriega, Z. C. Wu, I. Kravchenko, A. G. Rinzler and A. Ural. Nanolithographic patterning of transparent, conductive single-walled carbon nanotube films by inductively coupled plasma reactive ion etching. J. Vac. Sci. Technol. B 2007, 25 (2): 348-354.

DOI: 10.1116/1.2699836

Google Scholar