Research on Sol-Gel Transition Process of Gelatin

Article Preview

Abstract:

As a kind of functional material, gelatin gel is widely used in controlled drug release, biological tissue engineering, photographic and food industries. Plenty of studies on the gelatin gel have been carried out by researchers, which include gelation mechanisms, gelation kinetics, analysis on the crosslinked structure and macroscopic performance during the gelation process. Numerical simulation is a new method used in the study of gelatin sol-gel transition process, which can make up for the deficiency of the experimental research. E.g., the dynamic gelation process makes it difficult to measure the structural and performance parameters in time and space scales in experiments. However, these problems have been solved by numerical simulation method in our previous work. The experimental, theoretical and numerical simulation research on sol-gel transition of gelatin is reviewed, and the progress and difficulties in this field are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

474-478

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. A. L. Jones. Soft condensed matter. Oxford University Press, New York, (2002).

Google Scholar

[2] L. L. Hench, J. K. West. The sol-gel process. Chemical Reviews. 90(1990) 33-72.

Google Scholar

[3] P. J. Flory, R. R. Garrett. Phase transition in collagen and gelatin systems. Journal of the American Chemical Society. 80(1958)4836-4845.

DOI: 10.1021/ja01551a020

Google Scholar

[4] P. J. Flory, E. S. Weaver. Helix-coil transitions in dilute aqueous collagen solutions. Journal of the American Chemical Society. 82(1960)4518-4525.

DOI: 10.1021/ja01502a018

Google Scholar

[5] A. A. Karim, R. Bhat. Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trends in Food Science & Technology. 19(2008) 644-656.

DOI: 10.1016/j.tifs.2008.08.001

Google Scholar

[6] M. Kurisawa, N. Yui. Gelatin/dextran intelligent hydrogels for drug delivery: dual-stimuli-responsive degradation in relation to miscibility in interpenetrating polymer networks. Macromolecular Chemistry and Physics. 199(1998)1547-1554.

DOI: 10.1002/(sici)1521-3935(19980801)199:8<1547::aid-macp1547>3.0.co;2-e

Google Scholar

[7] L. Guo, R. H. Colby, C. P. Lusignan, T. H. Whitesides. Kinetics of triple helix formation in semidilute gelatin solutions. Macromolecules. 36(2003)9999-10008.

DOI: 10.1021/ma034264s

Google Scholar

[8] X. L. Chen, Y. X. Jia, L. G. Feng, S. Sun, L. J. An. Numerical simulation of coil-helix transition processes of gelatin. Polymer. 50(2009)2181-2189.

DOI: 10.1016/j.polymer.2009.02.039

Google Scholar

[9] M. Djabourov, P. Papon. Influence of thermal treatments on the structure and stability of gealtin gels. Polymer. 24(1983)537-542.

DOI: 10.1016/0032-3861(83)90101-5

Google Scholar

[10] P. V. Hauschka, W. F. Harrington. Collagen structure in solution. Ⅲ. Effect of cross-links on thermal stability and refolding kinetics. Biochemistry. 9(1970)3734-3745.

DOI: 10.1021/bi00821a012

Google Scholar

[11] C. Joly-Duhamel, D. Hellio, A. Ajdari, M. Djabourov. All gelatin networks: 2. The master curve for elasticity. Langmuir. 18(2002)7158-7166.

DOI: 10.1021/la020190m

Google Scholar

[12] E. van der Linden, A. Parker. Elasticity due to semiflexible protein assemblies near the critical gel concentration and beyond. Langmuir. 21(2005)9792-9794.

DOI: 10.1021/la051312o

Google Scholar

[13] X. L. Chen, Y. X. Jia, S. Sun, L. G. Feng, L. J. An. Performance inhomogeneity of gelatin during gelation process. Polymer. 50(2009)6186-6191.

DOI: 10.1016/j.polymer.2009.10.027

Google Scholar

[14] L. Guo. Gelation and micelle structure changes of aqueous polymer solutions. Pennsylvania State University, Pennsylvania , (2003).

Google Scholar

[15] L. Guo, R. H. Colby, C. P. Lusignan, A. M. Howe. Physical gelation of gelatin studied with rheo-optics. Macromolecules. 36(2003)10009-10020.

DOI: 10.1021/ma034266c

Google Scholar

[16] C. Joly-Duhamel, D. Hellio, A. Ajdari, M. Djabourov. All gelatin networks: 2. The master curve for elasticity. Langmuir. 18(2002)7158-7166.

DOI: 10.1021/la020190m

Google Scholar