Room Temperature Magnetocaloric Effect of the Cox(MnSb)1-x Compounds

Article Preview

Abstract:

The room-temperature magnetocaloric effect (MCE) of Cox(MnSb)1-x (x=0.07, 0.15, 0.24) alloys has been investigated. It is revealed that the Curie temperature TC and the magnetic entropy change ΔSM are sensitive to the Co content x. When x=0.15, the MCE of Co0.15(MnSb)0.85 alloy is optimal with ΔSM=1.8 J/kg.K at 324 K under an applied magnetic field of 3 T. A second-order phase transformation occurs around TC, and the magnetic hysteresis loss thermal lag is negligible. These features demonstrate that Co0.15(MnSb)0.85 alloy is a promising room-temperature magnetocaloric materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-59

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.C. Ma, Q.Q. Cao, H.C. Xuan, C.L. Zhang, L.J. Shen, D.H. Wang and Y. W, Du, J. Alloys. Compd. 509 (2011) 1111-1114.

Google Scholar

[2] V.K. Pecharsky and K.A. Gschneidner, Jr., Phys. Rev. Lett. 78 (1997) 4494-4497.

Google Scholar

[3] Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding and D. Feng, Phys. Rev. Lett. 78 (1997) 1142-1145.

Google Scholar

[4] F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao and X.X. Zhang, Appl. Phys. Lett. 78 (2001) 3675-3677.

Google Scholar

[5] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida and K. Oikawa, Appl. Phys. Lett. 85 (2004) 4358.

DOI: 10.1063/1.1808879

Google Scholar

[6] D.C. Dunand and P. Müllner. Adv. Mater. 23 (2010) 216-232.

Google Scholar

[7] O. Tegus, E. Brück, K.H.J. Buschow and F.R. De Boer, Nature. 415 (2002) 150-152.

Google Scholar

[8] C. Mayer, E. Gaudin, S. Gorsse and B. Chevalier, J. Solid State Chem. 184 (2011) 325-330.

Google Scholar

[9] V.A. Chernenko, E. Cesari, V.V. Kokorin and I.N. Vitenko, Scr. Mater. 33 (1995) 1239-1244.

Google Scholar

[10] G. H. Wen, R. K. Zheng, X. X. Zhang, W. H. Wang, J. L. Chen and G. H. Wu, J. Appl. Phys. 91 (2002) 8537-8539.

Google Scholar

[11] L. Morellon, P.A. Algarabel, M.R. Ibarra, J. Blasco, B. Garcia-Landa, Z. Arnold and F. Albertini, Phys. Rev. B. 58 (1998) 14721-14724.

Google Scholar

[12] N.T. Trung, L. Zhang, L. Caron, K.H.J. Buschow and E. Bruck, Appl. Phys. Lett. 96 (2010) 172503-172504.

Google Scholar

[13] X. Zhou, W.J. Jiang, H. Kunkel and G. Williams, J. Magn. Magn. Mater. 320 (2008) 930-935.

Google Scholar

[14] J. Shen, Y.X. Li and J.R. Sun, J. Alloys. Compd. 476 (2009) 693-696.

Google Scholar

[15] S.D. Li, M.M. Liu, Z.G. Huang, F. Xu, W.Q. Zou, F.M. Zhang and Y.W. Du, J. Appl. Phys. 99 (2006) 063901-063903.

Google Scholar

[16] I. Galanakis, P.H. Dederichs and N. Papanikolaou, Phys. Rev. B. 66 (2002) 134428.

Google Scholar

[17] X. Chen, M. Na, M. Cheon, S. Wang, H. Luo and B. D. McCombe, Appl. Phys. Lett. 81 (2002) 511.

Google Scholar

[18] K. U. Neumann and K. Ziebeck, J. Magn. Magn. Mater. 140 (1995) 967-968.

Google Scholar

[19] B. Emre, I. Dincer and Y. Elerman, J. Magn. Magn. Mater. 322 (2010) 448-453.

Google Scholar