Progress on Cytotoxicity In Vitro of Carbon Nanotubes

Article Preview

Abstract:

According to recent references, the progress on cytotoxicity in vitro of carbon nanotubes (CNTs) including the factors such as size , residual metal catalysts,and detection methods influencing cytotoxicity of CNTs are summarized. The results shown that residual metal catalysts must be removed as much as possible and ensure CNTs in some concentration range before using them.Biocompatibility of CNTs must be considered and chemical modification of CNTs to improve their use safety and advantages is indispensable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-45

Citation:

Online since:

April 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Iijima S., Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] Ye SF, Wu YH, Hou ZQ, Zhang QQ. ROS and NF-kappa B are involved in upregulation of IL-8 inA549 cells exposed to multi-walled carbon nanotubes. Biochemical and Biophysical ResearchCommunications. 2009; 379: 643-8.

DOI: 10.1016/j.bbrc.2008.12.137

Google Scholar

[3] Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, et al. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon. 2007; 45: 1743-56.

DOI: 10.1016/j.carbon.2007.05.011

Google Scholar

[4] Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E. Differential biocompatibility ofcarbon nanotubes and nanodiamonds. Diamond and Related Materials. 2007; 16: 2118-23.

DOI: 10.1016/j.diamond.2007.07.020

Google Scholar

[5] Garza KM, Soto KF, Murr LE. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. International Journal of Nanomedicine. 2008; 3: 83-94.

DOI: 10.2147/ijn.s2464

Google Scholar

[6] Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, et al. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology. 2005; 39: 1378-83.

DOI: 10.1021/es048729l

Google Scholar

[7] Pacurari M, Yin XJ, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, et al. Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology. 2008; 2: 155-70.

DOI: 10.1080/17435390802318356

Google Scholar

[8] Zhang XK, Wang XF, Lu QH, Fu CL. Influence of carbon nanotube scaffolds on human cervical carcinoma HeLa cell viability and focal adhesion kinase expression. Carbon. 2008; 46: 453-60.

DOI: 10.1016/j.carbon.2007.12.015

Google Scholar

[9] Tabet L, Bussy C, Amara N, Setyan A, Grodet A, Rossi M, et al. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. Journal of Toxicology and Environmental Health-Part a-Current Issues. 2009; 72: 60-73.

DOI: 10.1080/15287390802476991

Google Scholar

[10] Herzog E, Byrne HJ, Casey A, Davoren M, Lenz A-G, Maier KL, et al. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicology and Applied Pharmacology. 2009; 234: 378-90.

DOI: 10.1016/j.taap.2008.10.015

Google Scholar

[11] Tyshenko MG. Medical nanotechnology using genetic material and the need for precaution in design and risk assessments. International Journal of Nanotechnology. 2008; 5: 116-23.

DOI: 10.1504/ijnt.2008.016551

Google Scholar

[12] Simon-Deckers A, Gouget B, Mayne-L'Hermite M, Herlin-Boime N, Reynaud C, Carriere M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology. 2008; 253: 137-46.

DOI: 10.1016/j.tox.2008.09.007

Google Scholar

[13] Zhang DW, Yi CQ, Zhang JC, Chen Y, Yao XS, Yang MS. The effects of carbon nanotubes on theproliferation and differentiation of primary osteoblasts. Nanotechnology. 2007; 18: 75102.

DOI: 10.1088/0957-4484/18/47/475102

Google Scholar

[14] Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo. Molecular Biosystems. 2005; 1: 176-82.

DOI: 10.1039/b502429c

Google Scholar

[15] Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letters. 2007; 168: 121-31.

DOI: 10.1016/j.toxlet.2006.08.019

Google Scholar

[16] Tian FR, Cui DX, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicology in Vitro. 2006 ; 20: 1202-12.

DOI: 10.1016/j.tiv.2006.03.008

Google Scholar

[17] Pulskamp K, Worle-Knirsch JM, Hennrich F, Kern K, Krug HF. Human lung epithelial cells show biphasic oxidative burst after single-walled carbon nanotube contact. Carbon. 2007; 45: 2241-9.

DOI: 10.1016/j.carbon.2007.06.054

Google Scholar

[18] Worle-Knirsch JM, Pulskamp K, Krug HF. Carbon nanotubes hoax scientists in viability assays. Nano Letters. 2006; 6: 1261-8.

DOI: 10.1021/nl060177c

Google Scholar

[19] Belyanskaya L, Manser P, Spohn P, Bruinink A, Wick P. The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction. Carbon. 2007; 45: 2643-8.

DOI: 10.1016/j.carbon.2007.08.010

Google Scholar