Crystallography and Computer Simulation of Heat Treated Co- 10 at. Pct. Cu Alloys

Article Preview

Abstract:

The influence of heat treatment on phase decomposition of Co-10 at. pct. Cu alloy was studied. The materials and phase compositions were studied by using energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) techniques. XRD analysis showed that the samples contained Co, Cu, CuO and CoCu2O3 phases depending on the heat treatment regimes. Moreover it is found that the formation of dendrite Co phase render the spinodal decomposition even for deep long aging inside the miscibility gap. The crystal structural parameters were refined with FULLPROF program. 2-D computer simulation indicates that the morphology and the shape of the microstructure agree with experimental SEM micrographs for the Cu rich phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-328

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. M. Mebed. and J.M. Howe,.J. Appl. Phys. 100 (2006) 074310.

Google Scholar

[2] T. Fujita, S. Nishimura, T. Fujinami, K. Kaneko, Z. Horita, D. J. Smith Mat. Sci. Eng. A 417(2006) 149.

Google Scholar

[3] H.-B. Noh, K.-S. Lee, P. Chndra, M.-S. Won, Electrochimica Acta 61(2012)36.

Google Scholar

[4] A. Vannozzi, G. Thalmaier, A. A. Armenio, A. Augieri, V. Galluzzi, A. Mancini, A. Rufoloni, [5] T. Petrisor, [5] G. Celentano Acta Materialia 58 ( 2010) 910

DOI: 10.1016/j.actamat.2009.10.006

Google Scholar

[5] Cao, C.D., G.P. Gorler, D.M. Herlach, B. Wei, Mater. Sci. Eng. A, 325 (2002)503

Google Scholar

[6] C.D. Cao, B. Wei, D.M. Herlach, Phys. Rev. Lett. 89 (2002) 075507.

Google Scholar

[7] M. Kolbe, C.D. Cao, X.Y. Lu, P.K. Galenko, B. Wei, D.M. Herlach, Mater. Sci. Eng. A, 375-377(2004) 520

Google Scholar

[8] A. M. Mebed, M.I. Abd-Elrahman, A.M. Abd-Elnaiem, M.A. Gaffar, Phase Trans. 8 (2009)587

DOI: 10.1080/01411590903298744

Google Scholar

[9] A. M. Mebed, A. M. Abd-Elnaiem, T.B. Asafa, M.A. Gaffar, Phase Trans. (2012) 1.

Google Scholar

[10] A. M. Mebed, T. Koyama, T. Miyazaki, Computational Materials Science 14(1999)318

Google Scholar

[11] C. D. Cao, Z. Sun, X. J. Bai, L. B. Duan, J. B. Zheng, F. Wang, J Mater Sci. 46(2011)6203

Google Scholar

[12] D. Rogalla, D. Amsterdam : IEEE, 1969.

Google Scholar

[13] D. Porter, K. Easterling, London, UK, Chapman & Hall, 1992.

Google Scholar

[14] R. H. Yu, X.X. Zang, J. Tejada, M. Knobel, P.Tibeto, P. Alliset, J. App. Phys. 78 (1995) 392.

Google Scholar

[15] R.A. Khan, A.S. Bhatti, Journal of Magnetism and Magnetic Materials 323(2011) 340.

Google Scholar

[16] H.M. Rietveld, J. Appl. Cryst. 2(1969) 65.

Google Scholar

[17] A. Le-Bail, H. Dwory, J. L. Fourquet, Mat. Res. Bull. 23(1988) 447.

Google Scholar

[18] G. S. Pawley, J. Applied Crst.14(1981)357.

Google Scholar

[19] M. A. Gaffar, M. M. Ahmed, K. Yamada, T. Okuda, J. Phys. D: Appl. Phys. 40(2007) 4360

Google Scholar

[20] A.G. Khachaturyan in: "Theory of Structural Transformation in Solids," Wiley, NY, 1983.

Google Scholar

[21] T. Koyama, T. Miyazaki and A.M. Mebed: Metall. Mat. Trans. A26 (1995) 2617

Google Scholar