[1]
A. Javey et al., High performance n-type carbon nanotube field-effect transistors with chemically doped contacts, Nano Lett. 5 (2005) 345.
DOI: 10.1021/nl047931j
Google Scholar
[2]
A. Le Louarn et al., Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors, Appl. Phys. Lett. 90 (2007) 233108.
DOI: 10.1063/1.2743402
Google Scholar
[3]
S. J. Wind, J. Appenzeller, P. Avouris, Lateral scaling in carbon nanotube field-effect transistors, Phys. Rev. Lett. 91 (2003) 058–301.
DOI: 10.1103/physrevlett.91.058301
Google Scholar
[4]
Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Brag, T. A. Arias, P.W. Brouwer, P. L. McEuen, Electron–phonon scattering in metallic single-walled carbon nanotubes, Nano Lett.4 (2004) 517–520.
DOI: 10.1021/nl035258c
Google Scholar
[5]
W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, H. Park, Fabry–Perot, Interference in a nanotube electron waveguide, Nature 411 (2001) 665–669.
DOI: 10.1038/35079517
Google Scholar
[6]
A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, High dielectrics for advanced carbon-nanotube transistors and logic gates, Nat. Mater., vol. 1, no. 4, p.241–246, Dec. 2002.
DOI: 10.1038/nmat769
Google Scholar
[7]
S. J.Wind, J. Appenzeller, R.Martel, V. Derycke, and P. Avouris, Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes, Appl. Phys. Lett., vol. 80, no. 20, p.3817–3819, May 2002.
DOI: 10.1063/1.1480877
Google Scholar
[8]
S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, Quantum mechanical modeling of electron tunneling current from the inversion layer of ultrathin oxide nMOSFETs, IEEE Electron Device Lett., vol. 18, pp.209-211, may 1997.
DOI: 10.1109/55.568766
Google Scholar
[9]
J. L. Autran, R. Device, C. Chaneliere, and B. Balland, Fabrication and characterization of Si-MOSFETs with PECVD amorphous Ta2O5 gate insulator, IEEE Electron Device Lett., vol. 18, pp.447-449, Sept. 1997.
DOI: 10.1109/55.622525
Google Scholar
[10]
J. H. Lee, K. Koh, N. I. Lee, M. H. Cho, Y. K. Ki, J. S. Jeon, K. H. Cho, H. S. Shin, M. H. Kim, K. Fujihara, H. K. Kang, and J. T. Moon, Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-AL2O3 gate dielectric, in IEDM Tech. Dig., 2000, pp.645-648.
DOI: 10.1109/iedm.2000.904402
Google Scholar
[11]
R. Choi, K. Onishi, S. K. Chang, H. J. Cho, Y. H. Kim, S. Krishnan, M. S. Akbar, and J. C. Lee, Effects of deuterium anneal on MOSFETs with HfO2 gate dielectrics, IEEE Electron Device Lett., vol. 24, pp.144-146, Feb. 2003.
DOI: 10.1109/led.2003.809531
Google Scholar
[12]
W. J. Qi, R. Nieh, B. H. Lee, K. Onishi, and L. Kang, Performance of MOSFETs with ultrathin ZrO2 and Zr silicate gate dielectrics, in IEEE Symp. VLSI Tech. Dig., 2000, pp.15-16
Google Scholar
[13]
Z. Arefinia, A.A. Orouji, Investigation of the novel attributes of a carbon nanotube FET with high-k gate dielectrics, Physica E: Low-dimensional Syst. Nanostructures 40 (2008) 3068–3071.
DOI: 10.1016/j.physe.2008.04.005
Google Scholar
[14]
J. Clifford, D.L. John, L. Castro, D.P. Pulfrey, Electrostatics of partially gated carbon nanotube FETs, IEEE Transactions on Nanotechnology, Vol. 3, No. 2, 2004, p.281–286.
DOI: 10.1109/tnano.2004.828539
Google Scholar
[15]
Guo J, Datta S, Anantam MP, Lundstrom MS., Atomistic simulation of carbon nanotube field-effect transistors using non-equilibrium Green's function formalism, J Comput Elect 2005;3(3–4):373–7.
DOI: 10.1007/s10825-004-7080-7
Google Scholar
[16]
X. Zhou, K. Y. Lim, D. Lim, A simple and unambiguous definition of threshold voltage and its implications in deep-submicron MOS device modeling, IEEE Trans. Electron Devices 46 (1999) 807–809.
DOI: 10.1109/16.753720
Google Scholar