One-Dimensional TiO2 Nanothorn-Like Structures Assisted TiO2 Template for High Absorption Hydrophilic Self-Cleaning

Article Preview

Abstract:

One-dimensional (1D) titanium dioxide (TiO2) was synthesized using heat sol-dispersion immersion technique which is combination of four methods at lower temperature processing. The method is versatile with adjustable temperature, multi-ratio solution compositional and ability to tailor the structure into nanometer scale and small dimension of nanostructures. 1D TiO2 nanothorn-like structures assisted TiO2 template has been increased the performance of self-cleaning property with height of TiO2 nanostructures grew 17.5 nm at temperature 100oC. Further enhancing current work of coating function ability to the high performance and efficiency self-cleaning compared to present coating. The results showed a surface area for hydrophilic self-cleaning is 13.50 nm2 while the efficiency of 1D TiO2 nanostructures for self-cleaning through contact angle (CA) measurement indicated that 0.35 degrees after 2.30 minutes exposed to the water molecules droplets. The average of absorption coefficient (α) in UV region attribute 5.45 compared to another three heat immersions temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-27

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.M. Chien, N.N. Viet, N.T. Kieu Van, and N.T. Phuong Phong, Characteristics modification of TiO2 thin films by doping with silica and alumina for self-cleaning application, J. Experimental Nanoscience, 4 (2009) 221-232.

DOI: 10.1080/17458080902920506

Google Scholar

[2] T.A. Salleh, and V.K. Gupta, Photo-catalyzed degradation of hazadrdous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, J. Colloid and Interface Sci., 371 (2012) 101-106.

DOI: 10.1016/j.jcis.2011.12.038

Google Scholar

[3] Y. Hu, H. -L. Tsai, and C. -L. Huang, Phase transformation of precipitated TiO2 nanoparticles, Mater. Sci. Eng., A344 (2003) 209-214.

Google Scholar

[4] S. B. Amor, G. Baud, J. P. Besse, and M. Jacquet, Structural and optical properties of sputtered Titania films, Materials Science and Engineering: B, 47 (1997) 110-118.

DOI: 10.1016/s0921-5107(97)00027-5

Google Scholar

[5] L. Sirghi, M. Nakamura, Y. Hatanaka, O. Takai, Atomic Force Microscopy Study of the Hydrophilicity of TiO2 Thin Films Obtained by Radio Frequency Magnetron Sputtering and Plasma Enhanced Chemical Vapor Depositions , Langmuir, 17 (2001) 8199.

DOI: 10.1021/la010916z

Google Scholar

[6] F.B. Li, and X.Z. Li, Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment , Appl. Catal. 228 (2002) 15.

DOI: 10.1016/s0926-860x(01)00953-x

Google Scholar

[7] U. Vijayalakshmi and S. Rajeswari, Synthesis and characterization of sol–gel derived glass-ceramic and its corrosion protection on 316L SS, J. Sol-Gel Sci. Technol., 43 (2007) 251-258.

DOI: 10.1007/s10971-007-1576-0

Google Scholar

[8] C. T. Hsieh, M.H. Lai, Y.S. Cheng, Fabrication and superhydrophobicity of fluorinated titanium dioxide nanocoatings, J. Colloid and Interface Sci., 340 (2009) 237-242.

DOI: 10.1016/j.jcis.2009.08.029

Google Scholar

[9] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988-994.

DOI: 10.1021/ie50320a024

Google Scholar

[10] A.B. D Cassie, and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546-551.

DOI: 10.1039/tf9444000546

Google Scholar

[11] Y. Shao, D. Tang, J. Sun, Y. Lee, and W. Xiong, Lattice deformation and phase transformation from nano-scale anatase to nano-scale rutile TiO2 prepared by a sol-gel technique, China Particuology, 2 (2004) 119-123.

DOI: 10.1016/s1672-2515(07)60036-0

Google Scholar

[12] V.C. Nguyen and T.V. Nguyen, Photocatalytic decomposition of phenol over N-TiO2-SiO2 catalyst under natural sunlight, J. Experimental Nanoscience, 4 (2009) 233-242.

DOI: 10.1080/17458080902773707

Google Scholar

[13] K. Hashimoto, H. Irie, and Akira Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Japanese Journal of Applied Physics, 44 (2005) 8269-8285.

DOI: 10.1143/jjap.44.8269

Google Scholar

[14] W.D. Callister and Jr. G.R. David, An Introduction of Materials Science and Engineering seventh ed. vol. 212. New York: John Wiley and Sons (Asia), (2007).

Google Scholar

[15] C.T. Hsieh, M.H. Lai, and Y.S. Cheng, Fabrication and superhydrophobicity of fluorinated titanium dioxide nanocoatings, J. Colloidal and Interface Science, 340 (200) 9237-242.

DOI: 10.1016/j.jcis.2009.08.029

Google Scholar

[16] J.E. Collazos-Castro, A.M. Cruz, M.C. Vila, M.L. Cantu, L. Abad, A. P. Del Pino, J. Fraxedas, A.S. Juan, C. Fonseca, A.P. Pego, and N. C. Pastor, Neural cell growth on TiO2 anatase nanostructured surfaces, Thin Solid Films, 518 (2009) 160-170.

DOI: 10.1016/j.tsf.2009.06.048

Google Scholar