Anodisation Time-Related Nanocrystallite Size of Porous Silicon Template Studied by Raman Spectroscopy, Photoluminescence and Fourier Transforms Infrared Spectroscopy

Article Preview

Abstract:

Nanostructured Porous Silicon templates (NPSiT) were prepared by photo-electrochemical anodization of p-type crystalline silicon in HF electrolyte at different etching time. Five samples were prepared with etching time varied from 10 to 50 minutes at 20 mA/cm2 of current density. The effects of etching time on NPSiT were observed based on nanocrystallite size, photon energy and surface distribution. These studied was demonstrated by Raman spectroscopy, photoluminescence (PL) and Fourier transforms infrared spectroscopy (FTIR). It was found that NPSiT sample with large pore diameter, which is smaller nanocrystallites size of Si between pore. The optical properties of NPSiT were investigated by photoluminescence (PL) and PL peak broadening and shifting towards higher energy can be observed with increasing etching time. The optimum etching time with respect to PL intensity was obtained at 30 minutes, for which uniform pores and a shift of the PL maximum to a higher energy of 1.9 eV is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-64

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, vol. 57, pp.1046-1048, (1990).

DOI: 10.1063/1.103561

Google Scholar

[2] Y. Zhao, Z. Lv, Z. Li, X. Liang, J. Min, L. Wang, W. Shi, and Y. Liu, The relationship between hydrogen atoms and photoluminescent properties of porous silicon prepared by different etching time, Solid-State Electronics, vol. 54, pp.452-456, (2010).

DOI: 10.1016/j.sse.2010.01.022

Google Scholar

[3] D. L. Yue Zhao, Wenbin Sang, Deren Yang, Minhua Jiang, The influence of microstructure on optical properties of porous silicon, Solid-State Electronics, vol. 51, p.678–682, (2007).

DOI: 10.1016/j.sse.2007.02.042

Google Scholar

[4] K. Molnár, T. Mohácsy, P. Varga, É. Vázsonyi, and I. Bársony, Characterization of ITO/porous silicon LED structures, Journal of Luminescence, vol. 80, pp.91-97, (1998).

DOI: 10.1016/s0022-2313(98)00074-x

Google Scholar

[5] F. P. Mathew and E. C. Alocilja, Porous silicon-based biosensor for pathogen detection, Biosensors and Bioelectronics, vol. 20, pp.1656-1661, (2005).

DOI: 10.1016/j.bios.2004.08.006

Google Scholar

[6] M. Archer, M. Christophersen, and P. M. Fauchet, Electrical porous silicon chemical sensor for detection of organic solvents, Sensors and Actuators B: Chemical, vol. 106, pp.347-357, (2005).

DOI: 10.1016/j.snb.2004.08.016

Google Scholar

[7] R. L. Smith and S. D. Collins, Porous silicon formation mechanisms, Journal of Applied Physics, vol. 71, pp. R1-R22, (1992).

DOI: 10.1063/1.350839

Google Scholar

[8] P. G. Abramof, A. F. Beloto, A. Y. Ueta, and N. G. Ferreira, X-ray investigation of nanostructured stain-etched porous silicon, Journal of Applied Physics, vol. 99, (2006).

DOI: 10.1063/1.2162273

Google Scholar

[9] H. Liu and Z. L. Wang, Etching silicon wafer without hydrofluoric acid, Applied Physics Letters, vol. 87, pp.1-3, (2005).

DOI: 10.1063/1.2158021

Google Scholar

[10] D.R. Turner, J. Electrochem. Soc, vol. 105, p.402, (1958).

Google Scholar

[11] R. Herino, G. Bomchil, K. Barla, C. Bertrand, and J. L. Ginoux, Porosity and pore size distributions of porous silicon layers, Journal of the Electrochemical Society, vol. 134, pp.1994-2000, (1987).

DOI: 10.1149/1.2100805

Google Scholar

[12] B. C. a. A. H. I Gregora, Appl Phys, vol. 75, p.3034, (1994).

Google Scholar

[13] L. S. Y. Monin, B. Champagnon, C. Esnouf, A. Halimaout, Simultaneous microphotoluminescence and micro-Raman scatteringin porous silicon, Thin Solid Films vol. 255, pp.188-190, (1995).

DOI: 10.1016/0040-6090(94)05681-3

Google Scholar

[14] M. K. J. Zuk, G.T. Andrews, H. Kiefte, M.J. Cluter, R. Goulding, N.H. Rich, E. Nossarzewska-Orlowska, Characterization of porous silicon by Raman scattering and photoluminescence, Thin Solid Films, vol. 297, pp.106-109, (1997).

DOI: 10.1016/s0040-6090(96)09532-6

Google Scholar

[15] R. M. Mehra, V. Agarwal, V. K. Jain, and P. C. Mathur, Influence of anodisation time, current density and electrolyte concentration on the photoconductivity spectra of porous silicon, Thin Solid Films, vol. 315, pp.281-285, (1998).

DOI: 10.1016/s0040-6090(97)00756-6

Google Scholar

[16] Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite, Materials Science and Engineering: B.

DOI: 10.1016/j.mseb.2012.01.017

Google Scholar

[17] N. A. Asli, S. F. M. Yusop, M. Rusop, and S. Abdullah, Surface and bulk structural properties of nanostructured porous silicon prepared by electrochemical etching at different etching time, Ionics, vol. 17, pp.653-657, (2011).

DOI: 10.1007/s11581-011-0543-5

Google Scholar

[18] P. P. L. Z. Sui, I.P. Herman, G.S. Higashi, and H. Temkin, Raman analysis of light-emitting porous silicon, Applied Physics Letters, vol. 60, pp.2086-2088, (1992).

DOI: 10.1063/1.107097

Google Scholar

[19] Z. P. W. H. Richter, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon, Solid State Commun., vol. 39, pp.625-629, (1981).

DOI: 10.1016/0038-1098(81)90337-9

Google Scholar

[20] P. P. V. Paillard, M.A. Laguna, R. Carles, B. Kohn, and F. Huisken, Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals, Appl Phys, vol. 86, pp.1921-1924, (1999).

DOI: 10.1063/1.370988

Google Scholar

[21] P. Moriarty, Nanostructured Materials, Reports on Progress in Physics, vol. 64, pp.297-381, (2001).

Google Scholar

[22] K. J. A.K. Sood, and D.V.S. Muthu, Raman and high-pressure photoluminescence studies on porous silicon, Journal of Applied Physics, vol. 72, pp.4963-4965, (1992).

DOI: 10.1063/1.352066

Google Scholar

[23] N. D. Z. Gaburro, and L. Pavesi, Porous silicon, Encyclopedia of Condensed Matter Physics, p.391–401, (2005).

DOI: 10.1016/b0-12-369401-9/01149-9

Google Scholar

[24] K. A. Salman, K. Omar, and Z. Hassan, The effect of etching time of porous silicon on solar cell performance, Superlattices and Microstructures, vol. 50, pp.647-658, (2011).

DOI: 10.1016/j.spmi.2011.09.006

Google Scholar

[25] Z. A. T. W. Y. Kasra Behzad, Azmi Zakaria, and a. E. S. Afarin Bahrami, Advances in Optical Technologies, vol. 5, pp.157-168, (2012).

Google Scholar

[26] N. Y. Y.H. Ogata, R. Yasuda, T. Tsuboi, T. Sakka, and A. Otsuki, Structural change in p-type porous silicon by thermal annealing, Journal of Applied Physics, vol. 90, pp.6487-6249, (2001).

DOI: 10.1063/1.1416862

Google Scholar

[27] Y. K. X. a. S. Adachi, Light-emitting porous silicon formed by photoetching in aqueous HF/KIO 3 solution, Journal of Physics D: Applied Physics, vol. 39, pp.4572-4577, (2006).

DOI: 10.1088/0022-3727/39/21/011

Google Scholar