The Structure and Magnetic Properties of NiZn-Ferrite Films Deposited by Magnetron Sputtering at Room Temperature

Article Preview

Abstract:

NiZn-ferrite thin films were deposited onto silicon and glass substrates by radio frequency magnetron sputtering at room temperature. The effects of the relative oxygen flow ratio on the structure and magnetic properties of the thin films were investigated. The study results reveal that the films deposited under higher relative oxygen flow ratio show a better crystallinity. Static magnetic measurement results indicated that the saturation magnetization of the films was greatly affected by the crystallinity, grain dimension, and cation distribution in the NiZn-ferrite films. The NiZn-ferrite thin films with a maximum saturation magnetization of 151 emucm-3, which is about 40% of the bulk NiZn ferrite, was obtained under relative oxygen flow ratio of 60%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1702-1706

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ikeda, K. Kobayashi, K. Ohta, R. Kondo, T. Suzuki and M. Fujimoto: IEEE Trans. Magn. Vol. 39 (2003), pp.3057-3061.

Google Scholar

[2] H. Greve, C. Pochstein, H. Takele, V. Zaporojtchenko, F. Faupel, A. Gerber, M. Frommberger and E. Quandt: Appl. Phys. Lett. Vol. 89 (2006), p.242501.

DOI: 10.1063/1.2402877

Google Scholar

[3] K. Ikeda, K. Kobayashi and M. Fujimoto: J. Appl. Phys. Vol. 92 (2002), pp.5395-5400.

Google Scholar

[4] S. Ge, D. Yao, M. Yamaguchi, X. Yang, H. Zuo, T. Ishii, D. Zhou and F. Li: J. Phys. D: Appl. Phys. Vol. 40 (2007), pp.3660-3664.

Google Scholar

[5] S. Ohnuma, H. Fujimori, S. Furukawa, S. Mitani and T. Masumoto: J. Alloys Compd. Vol. 222 (1995), pp.167-172.

Google Scholar

[6] V. Korenivski: J. Magn. Magn. Mater. Vol. 215-216 (2000), pp.800-806.

Google Scholar

[7] G. S. D. Bench, A. E. Berkowitz: IEEE Trans. Magn. Vol. 41 (2005), p.2043.

Google Scholar

[8] C.C. Hsieh, H.W. Chang, C.W. Chang, W.C. Chang and C.C. Yang: Phys. Scr. Vol. T139 (2010), p.014031.

Google Scholar

[9] F. Xu, X. Zhang, N.N. Phuoc, Y. Ma and C.K. Ong: J. Appl. Phys. Vol. 105 (2009), p.043902.

Google Scholar

[10] H. Geng, J.Q. Wei, S.J. Nie, Y. Wang, Z.W. Wang, L.S. Wang, Y. Chen, D.L. Peng, F.S. Li and D.S. Xue: Mater. Lett. Vol. 92 (2013), pp.346-349.

Google Scholar

[11] J.H. Kim and S.S. Kim: J. Alloys Compd. Vol. 509 (2011), pp.4399-4403.

Google Scholar

[12] X. Shen, R. Gong, Z. Feng, Y. Nie, H. Li and J. Nie: J. Am. Ceram. Soc. Vol. 90 (2007), pp.2196-2199.

Google Scholar

[13] M. Pardavi-Horvath: J. Magn. Magn. Mater. Vol. 215-216 (2000), pp.171-183.

Google Scholar

[14] S. Yamashita, J. Yamasaki, M. Ikeda and N. Iwabuchi: J. Appl. Phys. Vol. 70 (1991), pp.6627-6629.

Google Scholar

[15] Y. Liu, Y. Li, H. Zhang, D. Chen and C. Mu: J. Appl. Phys. Vol. 109 (2011), p. 07A511.

Google Scholar

[16] A.E. Saba, E.M. Elsayed, M.M. Moharam, M.M. Rashad and R.M. Abou-Shahba: J. Mater. Sci. Vol. 46 (2011), pp.3574-3582.

DOI: 10.1007/s10853-011-5271-8

Google Scholar

[17] S. Nakashima, K. Fujita, K. Tanaka and K. Hirao: J. Phys.: Condens. Matter Vol. 17 (2005), pp.137-149.

Google Scholar

[18] M. Desai, J. Dash, I. Samajdar, N. Venkataramani, S. Prasad, P. Kishan and N. Kumar: J. Magn. Magn. Mater. Vol. 231 (2001), pp.108-112.

Google Scholar

[19] L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, B. Zou and S. Feng: J. Magn. Magn. Mater. Vol. 301 (2006), pp.445-451.

Google Scholar