Phase Evolution and Mechanical Properties of Cr-C Coatings Deposited by Reactive Unbalanced Magnetron Sputtering Process

Article Preview

Abstract:

Cr-C coatings with gradient Cr/CrN/CrCN inter-layers were studied to elucidate the effects of carbon contained on the mechanical properties and microstructures of the deposited coatings. The coatings were deposited by using a reactive sputtering system with constant total flow rate, target current and substrate bias. Percentage of C2H2 flow rates were varied from 10 % to 50 %. Carbon contains in the film were measure by EDS. Mechanical properties of the coatings were evaluated with micro-indentation, scratch tester, ball-on-disk tribo-tester. Microstructures of the films were characterized by SEM, TEM, and X-ray diffractermeter. The experimental results show that carbon contain increase from 21.6 %to 99.5 % with respect to C2H2 flow rates varied from 10 %, 20 %, 30 %, 40 %, 50%. And the phase of coatings change from Cr solid solution to Cr+Cr23C6+ amorphous diamond like carbon (DLC) and then to DLC +Cr7C3 and then to DLC+ Cr3C2+Cr7C3. The hardness of the coatings increase with C2H2 flow rate increased and achieved the maximum value of Hv1815 at 50% C2H2 flow rate. The coefficient of friction decreases from 0.630 to 0.285 when C2H2 flow rate increased from 10% to 50%. The wear rate decreased with increasing the C2H2 flow rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

2155-2170

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.L. Su, T.H. Liu, C.T. Su, S.H. Yao, W.H. Kao, K.W. Cheng, J. Mater. Process. Technol. 171 (2006) 108–117.

Google Scholar

[2] W.H. Kao, Y.L. Su, S.H. Yao, J.M. Luan, Mater. sci. eng. A 398 (2005) 233–240.

Google Scholar

[3] F. Maury, A. Douard, S. Delclos, D. Samelor, C. Tendero, Surf. Coat. Technol. 204 (2009) 983–987.

DOI: 10.1016/j.surfcoat.2009.04.020

Google Scholar

[4] D.Y. Wang, K.W. Weng, C.L. Chang, W.Y. Ho, Surf. Coat. Technol. 120–121 (1999) 622–628.

Google Scholar

[5] P. Panjana, M. Čekada, D.K. Merl, M. Maček, B. Navinšek, A. Jesih, A. Zalar, M. Jenko, Vacuum 71 (2003) 261–265.

DOI: 10.1016/s0042-207x(02)00748-0

Google Scholar

[6] J. Tang, L. Feng, J.S. Zabinski, Surf. Coat. Technol. 99 (1998) 242-247.

Google Scholar

[7] Dahan, U. Admon, N. Frage, J.Sariel, M.P. Dariel, J.J. Moore, Surf. Coat. Technol. 137 (2001) 111-115.

DOI: 10.1016/s0257-8972(00)01122-1

Google Scholar

[8] J. Tang, J.S. Zabinski, J.E. Bultman, Surf. Coat. Technol. 91(1997) 69-73.

Google Scholar

[9] Q. Zhang, J. He, W. Liu, M. Zhong, Surf. Coat. Technol. 162 (2003) 140–146.

Google Scholar

[10] M. Kuhn, P.W. Gold, J. Loos, Surf. Coat. Technol. 177 –178 (2004) 469–476.

Google Scholar

[11] M. Andritschky, M. Atfeh, K. Pischow, Surf. Coat. Technol. 203 (2009) 952–956

Google Scholar

[12] J. Romero, E. Martínez, J. Esteve, A. Lousa, Surf. Coat. Technol. 180 –181 (2004) 335–340.

Google Scholar

[13] M. Čekada, P. Panjan, M. Maček, P. Šmíd, Surf. Coat. Technol. 151 –152 (2002) 31–35.

Google Scholar

[14] J. Romero, A. Lousa, E. Martínez, J. Esteve, Surf. Coat. Technol. 163 –164 (2003) 392–397.

Google Scholar

[15] Y.L. Su, W.H. Kao, Surf. Coat. Technol. 137 (2001) 293-303.

Google Scholar

[16] J.M. Lackner, R.Major, L. Major, T. Schöberl, W. Waldhauser, Surf. Coat. Technol. 203 (2009) 2243–2248.

Google Scholar

[17] B. Karunagaran, S.J. Chung, E.-K. Suh and D. Mangalara, Physica B, 369 (2005) 129–134.

Google Scholar

[18] B. Karunagaran, Kyunghae Kim, D. Mangalaraj, Junsin Yi and S. Velumani, Sol. Energy Mater. Sol. Cells, 88 (2005) 199–208.

Google Scholar

[19] B. Jönsson and S. Hogmark, Thin Solid Films, 114 (1984) 257-269.

DOI: 10.1016/0040-6090(84)90123-8

Google Scholar

[20] P.C. Tsai, K.H. Chen, K. H. Chen, Thin Solid Films, 516 (2008) 5440-5444.

Google Scholar

[21] K.W. Weng, Y.C. Chen, T.N. Lin, D.Y. Wang, Thin Solid Films, 515 (2006) 1053-1057.

Google Scholar

[22] K.W. Weng, S. Han, Y.C. Chen, D.Y. Wang, J. Mater. Process. Technol., 203 (2008) 117-120.

Google Scholar

[23] C.L. Chang, D.Y. Wang, Diamond and Related Materails, 10 (2001) 1528-1534

Google Scholar

[24] B Saha, E Liu, S B Tor, NWKhun, D E Hardt, J H Chun, J. Micromech. Microeng. 19 (2009) 105025 (7pp)

Google Scholar

[25] Marco E. Siegrist, Esther D. Amstad, Jörg F. Löffler, Intermetallics, 15 (2007) 1228-1236.

Google Scholar