[1]
Magnano L, Boland JW. Generation of synthetic sequences of electricity demand: application in south Australia. Energy 2007;32:2230e43.
DOI: 10.1016/j.energy.2007.04.001
Google Scholar
[2]
Soares LJ, Souza LR. Forecasting electricity demand using generalized long memory. Int J Forecast 2006;22:17e28.
Google Scholar
[3]
Wang JZ, Chi DZ, Wu J, Lu HY. Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting. Expert Syst Appl 2011;38(7):8419e29.
DOI: 10.1016/j.eswa.2011.01.037
Google Scholar
[4]
Ramanathan R, Engle R, Granger CWJ, Vahid-Araghi F, Brace C. Short-run forecasts of electricity loads and peaks. Int J Forecast 1997;13:161e74.
DOI: 10.1016/s0169-2070(97)00015-0
Google Scholar
[5]
Thatcher MJ. Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia. Energy 2007;32:1647e59.
DOI: 10.1016/j.energy.2006.12.005
Google Scholar
[6]
Bianco V, Manca O, Nardini S. Electricity consumption forecasting in Italy using linear regression models. Energy 2009;34(9):1413e21.
DOI: 10.1016/j.energy.2009.06.034
Google Scholar
[7]
Goia A, May C, Goia GF. Functional clustering and linear regression for peak load forecasting. Int J Forecast 2010;26(4):700e11.
DOI: 10.1016/j.ijforecast.2009.05.015
Google Scholar
[8]
Taylor J. Short-term electricity demand forecasting using double seasonal exponential smoothing. J Oper Res Soc 2003;54:799e805.
DOI: 10.1057/palgrave.jors.2601589
Google Scholar
[9]
Harvey A, Koopman SJ. Forecasting hourly electricity demand using timevarying splines. J Am Stat Assoc 1993;88:1228e36.
Google Scholar
[10]
Pao HT. Forecasting energy consumption in Taiwan using hybrid nonlinear models. Energy 2009;34(10):1438e46.
DOI: 10.1016/j.energy.2009.04.026
Google Scholar
[11]
Zhu S, Wang J, Zhao W, Wang J. A seasonal hybrid procedure for electricity demand forecasting in China. Appl Energy 2011;88:3807e15.
DOI: 10.1016/j.apenergy.2011.05.005
Google Scholar
[12]
Wang H, Zhu S, Zhao J, Li G. An improved combined model for the electricity demand forecasting. Int Conf Comput Inf Sci; 2010:108e11. IEEEXplore.
Google Scholar
[13]
Azadeh A, Ghaderi SF, Sohrabkhani S. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 2008;36(7):2637e44.
DOI: 10.1016/j.enpol.2008.02.035
Google Scholar
[14]
Chang PC, Fan CY, Lin JJ. Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int J Electr Power Energ Syst 2011;33(1):17e27. Goia A, May C, Goia GF. Functional clustering and linear regression for peak load forecasting. Int J Forecast 2010;26(4):700e11.
DOI: 10.1016/j.ijforecast.2009.05.015
Google Scholar
[15]
Metaxiotis K, Kagiannas A, Askounis D, Psarras J. Artificial intelligence in short term electrical load forecasting: a state-of-the-art survey for the researcher.Energy Convers Manage 2003;44:1525e34.
DOI: 10.1016/s0196-8904(02)00148-6
Google Scholar
[16]
Azadeh A, Ghaderi F, Tarvardiyan S. Integration of artificial neural network and genetic algorithm to predict electricity energy consumption. Appl Math Comput 2007;186(2):1731e41.
Google Scholar
[17]
Dash PK, Liew AC, Rahman S, Ramakrishna G. Building a fuzzy expert system for electric load forecasting using a hybrid neural network. Expert Syst Appl 1995;9(3):407e21.
DOI: 10.1016/0957-4174(95)00013-y
Google Scholar
[18]
Kucukali S, Baris K. Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy 2010;38(5):2438e45.
DOI: 10.1016/j.enpol.2009.12.037
Google Scholar
[19]
Lendasse A, Lee J, Wertz V, Verleysen M. Forecasting electricity consumption using nonlinear projection and self-organizing maps. Neuro computing 2002;48(1e4):299e311.
DOI: 10.1016/s0925-2312(01)00646-4
Google Scholar
[20]
Manera M, Marzullo A. Modelling the load curve of aggregate electricity consumption using principal components. Environ Model Software 2005;20:1389e400.
DOI: 10.1016/j.envsoft.2004.09.019
Google Scholar
[21]
Deng JL. Introduction to grey systems. J Grey Syst 1989;1:1e24.
Google Scholar
[22]
Zhou P, Ang BW, Poh KL. A trigonometric grey prediction approach to forecasting electricity demand. Energy 2006;31(14):2839e47.
DOI: 10.1016/j.energy.2005.12.002
Google Scholar
[23]
Nguyen HT, Nabney IT. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models. Energy 2010;35(9):3674e85.
DOI: 10.1016/j.energy.2010.05.013
Google Scholar
[24]
Hong W-C. Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy 2011;36(9):5568e78.
DOI: 10.1016/j.energy.2011.07.015
Google Scholar
[25]
Qamber IS. Maximum annual load estimation and network strengthening for the kingdom of Bahrain. Arab Gulf J Sci Res 2010;28(4):214e23.
DOI: 10.51758/agjsr-04-2010-0009
Google Scholar
[26]
Taylor JW, Menezes LM, McSharry PE. A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int J Forecast 2006;22(1):1e16.
DOI: 10.1016/j.ijforecast.2005.06.006
Google Scholar
[27]
Min Jin, Xiang Zhou, Zhi M. Zhang, Manos M.Tentzeris. Short-term power load forecasting using grey correlation contest modeling. Expert Systems with Applications 39(2012) 773-779.
DOI: 10.1016/j.eswa.2011.07.072
Google Scholar