Enhanced Field Emission from Carbon Nanotubes Coated by Nanoparticles of Turbostratic Stacked Graphenes

Article Preview

Abstract:

The field emission (FE) of the carbon nanotubes (CNTs) modified by hydrocarbon ion treatment with an energy of 80 eV has been demonstrated. Compared with untreated CNTs, the turn-on field and the threshold field of the modified CNTs decreased significantly. Scanning electron microscopy and transmission electron microscopy indicate that, after hydrocarbon ion treatment, the CNTs are coated by amorphous carbon layer at 300°C of substrate temperature and nanoparticles of graphene stacks at 700°C. It is considered that both amorphous carbon and stacked graphene coating layer can decrease the effective surface work function of CNTs and thus increase FE.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

479-484

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell and H. Dai: Science Vol. 283, (1999), p.512

Google Scholar

[2] M.L. Terranova, S. Orlanducci, A. Fiori, E. Tamburri, V. Sessa and M. Rossi: Chem. Mater. Vol. 17, (2005), p.214

Google Scholar

[3] X.C. Xiao, J.W. Elam, S. Trasobares, O. Auciello and J.A. Carlisle: Adv. Mater. Vol. 17, (2005), p.1496

Google Scholar

[4] H. Schittenhelm, D.B. Geohegan, G.E. Jellison, A.A. Purtzky, M.J. Lance and P.F. Britt: Appl. Phys. Lett. Vol. 81, (2002), p. (2097)

Google Scholar

[5] S. Trasobares, C.P. Ewels, J. Birrel, O. Stephan, B.Q. Wei and J.A. Carlisle: Adv. Mater. Vol. 16, (2004), p.610

Google Scholar

[6] B.W. Smith and D.E. Luzzi: Chem. Phys. Lett. Vol. 321, (2000), p.169

Google Scholar

[7] K. Yu, Z.Q. Zhu, Y.S. Zhang, Q. Li, W.M. Wang and L.Q. Luo: Appl. Surf. Sci. Vol. 225, (2004), p.380

Google Scholar

[8] T. Feng, J.H. Zhang, Q. Li, X. Wang, K. Yu and S.C. Zou: Physica E Vol. 36, (2007), p.28

Google Scholar

[9] A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov and A.S. Anisimov: Nat. Nanotech. Vol. 2, (2007), p.156

Google Scholar

[10] E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren and T.W. Chou: J. Appl. Phys. Vol. 91, (2002), p.6034

Google Scholar

[11] A. Wadhawan, R.E. Stallcup II and J.M. Perez: Appl. Phys. Lett. Vol. 78, (2001), p.108

Google Scholar

[12] W. Yi, T. Jeong, S.G. Yu, J. Heo, C. Lee, J. Lee, W. Kim, J.B. Yoo and J. Kim: Adv. Mater. Vol. 14, ( 2002), p.1464

Google Scholar

[13] C.Y. Zhi, X.D. Bai and E.G. Wang: Appl. Phy. Lett. Vol. 81, (2002), p.1690

Google Scholar

[14] S.C. Kung, K.C. Hwang and I.N. Lin: Appl. Phys. Lett. Vol. 80, (2002), p.4819

Google Scholar

[15] C.H. Weng, K.C. Leou, H.W. Wei, Z.Y. Juang, C.H. Tung and C.H. Tsai: Appl. Phys. Lett. Vol. 85, (2004), p.4732

Google Scholar

[16] Z.C. Ni, Q.T. Li, D.Z. Zhu and J.L. Gong: Appl. Phys. Lett. Vol. 89, (2006), p.053107

Google Scholar

[17] F. Tuinstra and J.L. Koenig: J. Chem. Phys. Vol. 53, (1970), p.1126

Google Scholar

[18] A.C. Ferrari and J. Robertson: Phys. Rev. B Vol. 61, (2000), p.14095

Google Scholar

[19] A.V. Krasheninnikov, K. Nordlund, M. SirviÖ, E. Salonen and J. Keinonen: Phys. Rev. B Vol. 63, (2001), P. 245405

Google Scholar

[20] A.V. Pomoell J, A.V. Krasheninnikov, K. Nordlund and J. Keinonen: J. Appl. Phys. Vol. 96, (2004), p.2864

Google Scholar