Thin Film Microcircuit Preparation in a Diamond Anvil Cell

Article Preview

Abstract:

An effective and convenient method about molybdenum metal thin film microcircuit was developed on diamond anvil cell(DAC) under high pressure. Alumina film was used as the protective layer and sputtered on DAC. By using this method, we studied the electrical resistance variation about nanoparticles ZnS power up to 36GPa. The reversible phase transition had been reflected clearly by the electrical resistance measurements with sample.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

499-502

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Jayaraman, Diamond anvil cell and high-pressure physical investigations, Rev. Mod. Phys. 55(1983)65-108.

DOI: 10.1103/revmodphys.55.65

Google Scholar

[2] D. A. Polvani, J. F. Meng, M. Hasegawa, and J. V. Badding, Measurement of the thermoelectric power of very small samples at ambient and high pressures, Rev. Sci. Instrum.70(1999)3586-3589.

DOI: 10.1063/1.1149964

Google Scholar

[3] A. M. Zaitsev, M. Burchard, J. Meijer, A. Stephan, B. Burchard, W. R. Fahrner, and W. Maresch, Diamond Pressure and Temperature Sensors for High-Pressure High-Temperature Applications, Phys. Stat. Sol (a),185(2001)59-64.

DOI: 10.1002/1521-396x(200105)185:1<59::aid-pssa59>3.0.co;2-c

Google Scholar

[4] S. T. Weir, J. Akella, C. Aracne-Ruddle, Y. K. Vohra, and S. A. Catledge, Epitaxial diamond encapsulation of metal microprobes for high pressure experiments, Appl. Phys. Lett. 77 (2000)3400-3402.

DOI: 10.1063/1.1326838

Google Scholar

[5] N. Velisavljevic and Y. K. Vohra, Bioceramic hydroxyapatite at high pressures, Appl. Phy. Lett. 82(2003)4271-4273.

DOI: 10.1063/1.1584076

Google Scholar

[6] R. J. Hemley, H. K. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Hauserman, X-ray Imaging of Stress and Strain of Diamond, Iron, and Tungsten at Megabar Pressures, Science, 276 (1997)1242-1245.

DOI: 10.1126/science.276.5316.1242

Google Scholar

[7] S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution, Appl. Phys. Lett. 80(2002), 3605-3607.

DOI: 10.1063/1.1478152

Google Scholar

[8] R. S. Hixson, D. A. Boness, J. W. Shaner, and J. A. Moriarty, Acoustic Velocities and Phase Transitions in Molybdenum under Strong Shock Compression, Phys. Rev. Lett. 62(1989)637-640.

DOI: 10.1103/physrevlett.62.637

Google Scholar

[9] A. P. Japhcoat, R. J. Hemley, and H. K. Mao, X-ray diffraction of ruby (Al2O3:Cr3+) to 175 GPa, Physica B+C, 150 (1988)115-121.

DOI: 10.1016/0378-4363(88)90112-x

Google Scholar

[10] S. B. Qadri, E. F. Skelton, A. D. Dinsmore, J. Z. Hu, W. J. Kim, C. Nelson, and B. R. Ratna, The effect of particle size on the structural transitions in zinc sulfide, J. Appl. Phys. 89 (2001)115-119.

DOI: 10.1063/1.1328066

Google Scholar

[11] B. A. Weinstein, Phonon dispersion of zinc chalcogenides under extreme pressure and the metallic transformation, Solid State Communation. 24 (1977)595-598.

DOI: 10.1016/0038-1098(77)90369-6

Google Scholar

[12] S. R. Tiong, M. Hiramatsu, Y. Matsushima, and E. Ito, The Phase Transition Pressures of Zinc sulfo selenide Single Crystals, Jpn. J. Appl. Phys. 28(1989)291-294.

DOI: 10.1143/jjap.28.291

Google Scholar

[13] S. Ves, U. Schwarz, N. E. Christensen, K. Syassen, and M. Cardona, Cubic ZnS under pressure: Optical-absorption edge, phase transition, and calculated equation of state, Phys.Rev.B, 42(1990)9113-9118.

DOI: 10.1103/physrevb.42.9113

Google Scholar

[14] C. E. Sims, G. D. Barrera, N. L. Allan, and W. C. Mackrodt, Thermodynamics and mechanism of the B1-B2 phase transition in group-I halides and group-II oxides, Phys.Rev.B, 57(1998)11164-11172.

DOI: 10.1103/physrevb.57.11164

Google Scholar