Study on Catalytic Efficiency of Ag⁄N Co–Doped TiO2 Nanotube Arrays under Visible Light Irradiation

Article Preview

Abstract:

Ag⁄N co–doped TiO2 nanotube arrays (TNTs) were prepared by anodic oxidation, a certain amount of Ag deposited on the surface of TNTs by photodeposition and annealing post-treatment. The doped TNTs were characterized by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–vis diffusion reflection spectroscopy (UV–vis DRS). The photocatalytic activities of the prepared TiO2 were evaluated by degrading rhodamine B (RhB) under visible light irradiation (≤ 420 nm). The photocatalytic degradation efficiency of the Ag/N-TNTs obtained for the degradation of RhB are 0.32 times, 0.6 times and 1.86 times higher than that of TNTs, N–TNTs, AgTNTs, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

511-517

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Ahn, Y. Yan, S. Shet, T. Deutsch , et al: Appl. Phys. Lett. Vol. 91, (2007), p.231909.

Google Scholar

[2] Y. Wang, Y.C. Wu, Y.Q. Qin, et al: J. Alloys Compd. Vol. 509, (2011), p.157.

Google Scholar

[3] Y. Chen, L. Hong, W.Q. Han, et al: J. Electroanal. Chem. Vol. 648, (2010), p.119.

Google Scholar

[4] Y.Q. Gai, J.B. Li, S.S. Li, et al: Phys. Revi. Lett. Vol. 102 (2009), p.036402.

Google Scholar

[5] L. Huang, S. Zhang, F. Peng, et al: Scripta Mater. Vol. 63 (2010), p.159.

Google Scholar

[6] P. Xu, T. Xu, J. Lu, et al: Energy Environ. Sci. Vol. 3 (2010), p.1128.

Google Scholar

[7] S.Z. Hu, F.Y. Li, Z.P. Fan: Bull. Korean Chem. Soc. Vol. 33 (2012), p.2309.

Google Scholar

[8] X.J. Liu, L.K. Pan, T. Lv, et al: RSC Advances Vol. 2 (2012), p.3823.

Google Scholar

[9] S.S. Zhang, H.J. Wang, H. Yu, et al: Catal. Commun. Vol. 12 (2011), p.689.

Google Scholar

[10] H.R. Zheng, Y.J. Cui, J.S. Zhang, et al: Chinese J Chem Phys Vol. 32 (2011), p.100. "In Chinese"

Google Scholar

[11] Q. Wu,Y.F. Su, L. Sun, et al: Chinese J Chem Phys Vol. 28 (2012), p.635. "In Chinese"

Google Scholar

[12] X.R. Zhang, Y.H. Lin, J.F. Zhang, et al: Chinese J Chem Phys Vol. 26 (2010), p.2733. "In Chinese"

Google Scholar

[13] J.J. Xu,Y.H. Ao, M.D. Chen, et al: Appl. Surf. Sci. Vol. 256 (2010), p.4397.

Google Scholar

[14] B.Z. Tian, C.Z. Li, F. Gu, et al: Catal. Commun. Vol. 10 (2009), p.925.

Google Scholar

[15] H.M. Zhang, C.H. Liang, J. Liu, et al: Langmuir Vol. 28 (2012), p.3839.

Google Scholar

[16] J.G. Yu, J.F. Xiong, B. Cheng, et al: Appl. Catal. B-Environ. Vol. 60 (2005), p.211.

Google Scholar

[17] S. Wilson, M. Shun, G.H. Lu, et al: Chem. Phys. Lett. Vol. 485 (2010), p.171.

Google Scholar

[18] E.H. Wang S.W. Liu T.G. Li,et al: Chin. J. Inorg. Chem. Vol. 27 (2011), p.537.

Google Scholar

[19] M. Wu, B.F. Yang, Y.Lv, et al: Appl. Surf. Sci. Vol. 256 (2010), p.7125.

Google Scholar

[20] C.X. Feng, Y. Wang, Z.S. Jin, et al: Chinese J Chem Phys Vol. 24 (2008), p.633. "In Chinese"

Google Scholar

[21] G. Chang, I. Tanahashi and M. Oyama: J. Mater. Res. Vol. 25 (2010), p.117.

Google Scholar