[1]
Y.Wang and J.H. Liu. Chaotic particle swarm optimization for assembly sequence planning. Robotics and Computer-Integrated Manufacturing,Vol.26(2010), pp.212-222.
DOI: 10.1016/j.rcim.2009.05.003
Google Scholar
[2]
S.J. Hu, J. Ko, L. Weyand, et, al. Assembly System Design and Operations for Product Variety. CIRP Annals-Manufacturing Technology Vol.60(2011), pp.715-733.
DOI: 10.1016/j.cirp.2011.05.004
Google Scholar
[3]
K.N. McKay. Unifying the theory and practice of production scheduling. Journal of Manufacturing Systems Vol.18(1999), pp.241-255.
Google Scholar
[4]
W.X. Zhang, R.E. Korf. A study of complexity transitions on the asymmkric traveling salesman problem, Artificial Intelligence Vol.81(1996), pp.223-239.
DOI: 10.1016/0004-3702(95)00054-2
Google Scholar
[5]
P. Berman,M. Karpinski. 8/7-Approximation Algorithm for (1,2)-TSP. In: SODA'06, Miami, FL (2006) 641-648.
Google Scholar
[6]
B.W. Douglas: Introduction to graph theory (Pearson Education Asia Limited and China Machine Press, Bei Jing 2006)
Google Scholar
[7]
S. Climer, W.X. Zhang. Cut-and-solve: An iterative search strategy for combinatorial optimization problems. Artificial Intelligence, Vol.170 (2006), pp.714-738.
DOI: 10.1016/j.artint.2006.02.005
Google Scholar
[8]
D.S. Johnson, L.A. McGeoch: The Traveling Salesman Problem and Its Variations, Combinatorial Optimization (Springer Press, London 2004).
Google Scholar
[9]
K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. In: www2.iwr.uni-heidelberg.de/groups/comopt/ software/TSPLIB95/tsp/.
Google Scholar
[10]
H. Ghaziri, I.H. Osman. A neural network algorithm for the traveling salesman problem with backhauls. Computers & Industrial Engineering, Vol.44(2003), pp.267-281.
DOI: 10.1016/s0360-8352(02)00179-1
Google Scholar
[11]
W.N. Chen, J. Zhang, et, al. A novel set-based particle swarm optimization method for discrete optimization problems. IEEE Trans. Evolutionary Computation, Vol.14(2010), pp.278-300.
DOI: 10.1109/tevc.2009.2030331
Google Scholar
[12]
L.J. Schmitt, M.M. Amini. Performance characteristics of alternative genetic algorithmic approaches to the traveling salesman problem using path representation: An empirical study. European Journal of Operational Research, Vol.108 (1998), pp.551-570.
DOI: 10.1016/s0377-2217(97)00206-3
Google Scholar
[13]
Y.H. Liu. Different initial solution generators in genetic algorithms for solving the probabilistic traveling salesman problem. Applied Mathematics and Computation, Vol.216 (2010), pp.125-137.
DOI: 10.1016/j.amc.2010.01.021
Google Scholar
[14]
B. Bontoux, C. Artigues, D. Feillet. A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem. Computers & Operations Research, Vol.37(2010), pp.1844-1852.
DOI: 10.1016/j.cor.2009.05.004
Google Scholar
[15]
F. Liu, G.Z. Zeng. Study of genetic algorithm with reinforcement learning to solve the TSP. Expert System with Applications, Vol.39(2009), pp.6995-7001.
DOI: 10.1016/j.eswa.2008.08.026
Google Scholar
[16]
S.M. Chen, C.Y. Chien. Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert System with Applications, Vol.38(2011), pp.14439-14450.
DOI: 10.1016/j.eswa.2011.04.163
Google Scholar
[17]
V. Deineko, B. Klinz, G. Woeginger, Four point conditions and exponential neighborhoods for symmetric TSP. In: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, SODA'06, Miami, FL (2006) 544-553.
DOI: 10.1145/1109557.1109617
Google Scholar
[18]
J.H. Holland: Adaptation in nature and artificial system (MIT Press, Cambridge 1975).
Google Scholar
[19]
T.D.G wiazda. Genetic algorithms reference. Vol1: Crossover for single-objective numerical optimization problems (Springer Press, 2006).
Google Scholar
[20]
J. Majumdar, A.K. Bhunia. Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. Journal of Computational and Applied Mathematics, Vol.235 (2011), pp.3063-3078.
DOI: 10.1016/j.cam.2010.12.027
Google Scholar