[1]
R. T. Rockafellar, "Conjugate duality and optimization", CBMS Lecture Note Ser., Philadephia, 1974.
Google Scholar
[2]
T. Tanino, Y. Sawaragi, Conjugate maps and duality in multiobjective optimization, Journal of Optimization Theory and Applications, 31,473-499 (1980).
DOI: 10.1007/bf00934473
Google Scholar
[3]
Y. Sawaragi, H. Nakayama and T. Tanino, "Theory of Multiobjective Optimization", Academic Press, New York, 1985.
Google Scholar
[4]
N. Q. Huy, D. S. Kim, Duality in vector optimization via augmented Lagrangian, J. Math. Appl., 386, 473-486 (2012).
DOI: 10.1016/j.jmaa.2011.07.017
Google Scholar
[5]
D. T. Luc, Theory of vector optimizaiton, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1989.
Google Scholar
[6]
T. Tanino, Conjugate duality in vector optimization, Journal of Mathmetical Analysis and Application, 167, 84-97 (1992).
Google Scholar
[7]
W. Song, A generalization of Fenchel duality in set-valued vector optimization, Math. Methods Oper. Res., 48, 259-272 (1998).
DOI: 10.1007/s001860050027
Google Scholar
[8]
Z. F. Li, Benson Proper Efficiency in the Vector Optimization of Set-Valued Maps, Journal of optimization theory and applications, 98,623-649 (1998).
DOI: 10.1023/a:1022676013609
Google Scholar
[9]
Y. H. Xu, W. Z. Xiong, T. Wang, Benson subgradient and its application of set-valued optimization problem, Jounal of Nangchang University, 326-331 (2010).
Google Scholar