[1]
R. Iannacci and M. N. Nkashama, On periodic solutions of forced second order differential equations with deviating arguments, Lecture Notes in Mathematical.1151(1984), Springer-Verlag, 224-232.
DOI: 10.1007/bfb0074731
Google Scholar
[2]
W. Layton, Periodic solutions of nonlinear delay equations, J.Math. Anal. Appl.77(1980), 198-204.
Google Scholar
[3]
F. Z. Cong, Periodic solutions for 2kth with ordinary differential equations with nonresonance, Nonlinear Anal. 32 (1997).
DOI: 10.1016/s0362-546x(97)00517-8
Google Scholar
[4]
F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solutions for (2n+1)th-order differential equations, J.Math. Anal. Appl. 241 (2000), 1-9.
Google Scholar
[5]
Y. Li and H. Z. Wang, Periodic solutions of high order Duffing equations, Appl. Math. Chinese Univ. 6 (1991), 407-412.
Google Scholar
[6]
B. G. Liu and L. H. Huang, Periodic solutions for nonlinear n-th order differential equations with delays, J. Math. Anal. Appl. 313 (2006), 700-716
Google Scholar
[7]
S. Lu and W. Ge, Periodic solutions for a kind of Liénard equations with deviating arguments, J. Math. Anal. Appl. 249 (2004), 213-243.
Google Scholar
[8]
J.Mawhin, J.R. Ward, Nouniform nonresonance conditions at the two first eigenvalues for periodic solutions of forced Liénard and Duffing equations, Rocky Mountain Journ. Math., 12 (1982),643-654. 701 .
DOI: 10.1216/rmj-1982-12-4-643
Google Scholar