3D Thermo-Mechanical Simulation Coupled with Adaptive Remeshing for Metal Milling

Article Preview

Abstract:

As a material removal process, metal milling process involves large geometry deformation, material thermo-visco-plastic flow coupled with damage and complex contact-friction problems. During simulation of metal milling, the finite elements distort severely at the local regions with high gradient of physical field such as stress, strain and temperature due to these problems. This paper presents numerical adaptive remeshing procedure dedicated to metal milling process. The procedure integrates Explicit solver of ABAQUS, OPTIFORM mesher and python script program transfer to execute step by step the incremental milling process. At each step, the meshes are refined and coarsened automatically based on geometrical and physical error estimations; the physical fields are transferred (point to point) from old to the new one using advanced algorithm. Johnson-cook material model is used to simulate the material plastic flow with ductile damage. Some numerical results are given to demonstrate the efficiency of the proposed procedure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.Ozel, T.Altan, Process simulation using finite element method-prediction of cutting force, tool stresses and temperature in high speed flat end milling, International Journal of Machine Tools & Manufacture 40 (2000) 713–738.

DOI: 10.1016/s0890-6955(99)00080-2

Google Scholar

[2] G.M. Pittala, M.Monno, A new approach to the prediction of temperature of the workpiece of face milling operations of ti-6al-4v, Applied Thermal Engineering 31 (2011) 173–180.

DOI: 10.1016/j.applthermaleng.2010.08.027

Google Scholar

[3] B.Rao, C.R. Dandekar, Y.C. Shin, An experimental and numerical study on the face milling of ti-6al-4v alloy:tool performance and surface integrity, Journal of Material Processing Technology 211 (2011) 294–304.

DOI: 10.1016/j.jmatprotec.2010.10.002

Google Scholar

[4] S.M. Afazow, S.M. Ratchev, J.Segal, Modelling and simulation of micro-milling cutting force, Journal of Material Processing Technology 210 (2010) 2154–2162.

DOI: 10.1016/j.jmatprotec.2010.07.033

Google Scholar

[5] R. J. Saffar, M. Razfar, O.Zarei, E.Ghassemieh, Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method, Simulation Modelling Practice and Theory 16 (2008) 1677–1688.

DOI: 10.1016/j.simpat.2008.08.010

Google Scholar

[6] H.Borouchaki, A.Cherouat, P.Laug, K.Saanouni, Adaptive remeshing for ductile fracture prediction in metal forming, C. R. Mecanique 330 (2002) 709–716.

DOI: 10.1016/s1631-0721(02)01519-x

Google Scholar

[7] A.Cherouat, L.Moreau, H.Borouchaki, Advanced numerical simulation of metal forming processes using adaptive remeshing procedure, Material Science Forum 614 (2009) 27–33.

DOI: 10.4028/www.scientific.net/msf.614.27

Google Scholar

[8] A.Cherouat, H.Borouchaki, K.Saanouni, P. Laug, Numerical methodology for metal forming processes using elastoplastic model with damage occurrence, J.Mater. Sci. Technol 22.

DOI: 10.4203/ccp.80.80

Google Scholar

[9] H.Borouchaki, T.Grosges, D.Barchiesi, Improved 3d adaptive remeshing scheme applied in high electromagnetic field gradient computation, Finite Elements in Analysis and Design 46 (2010) 84–95.

DOI: 10.1016/j.finel.2009.06.026

Google Scholar

[10] T.Grosges, H.Borouchaki, D.Barchiesi, Three dimensional adaptive remeshing scheme applied to the control of the spatial representation of complex feld pattern in electromagnetic, Applied Physics B 1 (2010) 883–889.

DOI: 10.1007/s00340-010-4155-y

Google Scholar

[11] P. Perzyna, Fundamental problems in viscoplasticity, Advances in applied mechanics 9 (2) (1966) 244–368

Google Scholar

[12] R.C. Batra, C.H. Kim, Effect of viscoplastic flow rules on the initiation and growth of shear bands at high strain rates, Journal of the Mechanics and Physics of Solids 38 (6) (1990) 859–874.

DOI: 10.1016/0022-5096(90)90043-4

Google Scholar

[13] G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressure, Engineering Fracture Mechanics 21 (1985) 31-48.

DOI: 10.1016/0013-7944(85)90052-9

Google Scholar

[14] J.L. Chaboche, G. Cailletaud, Integration methods for complex plastic constitutive equations, Comp. Meth. Appl. Mech. Eng. 133 (1996) 125-155.

DOI: 10.1016/0045-7825(95)00957-4

Google Scholar

[15] J.C. Simo, R. Taylor, Consistent tangent operators for rate independent elastoplasticity, Comput. Methods Appl. Mech. Eng. 48 (1985) 101-118.

DOI: 10.1016/0045-7825(85)90070-2

Google Scholar

[16] P.O. Bouchard, L. Bourgeon, An enhanced Lemaitre model formulation for materials processing damage computation, Int. J. Mater. Form. 4 (2011) 299–315.

DOI: 10.1007/s12289-010-0996-5

Google Scholar

[17] ABAQUS, Theory Mannual, Version 6.10-2.

Google Scholar

[18] A. Maillard, "Etude expérimentale et théorique du découpage", Thèse de Doctorat, Université de Technologie de Compiègne, Décembre, 1991.

Google Scholar

[19] J-L. Bacaria, O. Dalverny, S. Caperaa, A 3D transient numericam model of milling, IMechE Journal of Engineering Manufacture, Part B, Vol 215(2001), pp.1-4.

DOI: 10.1243/0954405011518935

Google Scholar

[20] Y.C. Zhang, T.Mabrouki, D.Nelias, Y.D. Gong, Fe-model for titanium alloy (Ti-6Al-4V) cutting based on the identification of limiting shear stress at tool-chip interface, Int J Mater Form., Vol 4(2011), pp.11-23.

DOI: 10.1007/s12289-010-0986-7

Google Scholar

[21] Lesuer.DR, Experiment investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum, Tech. rep. (2000).

Google Scholar

[22] D.Umbrello, Finite elment simulation of conventional and high speed machining of Ti6Al4V alloy, Journal of Material Processing Technology 196 (2008) 79–87.

DOI: 10.1016/j.jmatprotec.2007.05.007

Google Scholar