Inverse Identification Method to Characterize the Behavior of Coupled Elasto-Plastic Coupled to Damage Model Using Modified Erichsen Test

Article Preview

Abstract:

This study presents experimental and numerical approaches to study the thermo-elasto-plastic behavior coupled to ductile damage of thin sheet. The study highlights the influence of temperature on the mechanical properties affecting the ability of forming aluminum sheet 1050A. The properties of the Swifts model hardening coupled to isotropic ductile damage variable and the Erichsen Index are obtained using inverse approach (Nelder-Mead method). The obtained results have established a correlation between the Index Erichsen formability of the material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-28

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Ghouati, J.-C. Gelin, Identification of material parameters directly from metal forming processes, J. Mater. Process. Technol. 80–81 (1998) 560–564.

DOI: 10.1016/s0924-0136(98)00159-9

Google Scholar

[2] J.S. Chung, S.M. Hwang, Application of a genetic algorithm to process optimal design in non isothermal metal forming, J. Mater. Process. Technol.80–81 (1998) 136–143.

DOI: 10.1016/s0924-0136(98)00209-x

Google Scholar

[3] X.T. Feng, C. Yang, Genetic evolution of nonlinear material constitutive models, Comput. Methods Appl. Mech. Engrg. 190 (2001) 5957–5973.

DOI: 10.1016/s0045-7825(01)00207-9

Google Scholar

[4] A. Khalfallah, H. Bel Hadj Salah , A. Dogui Anisotropic parameter identification using inhomogeneous tensile test. European Journal of Mechanics A/Solids 21 (2002) 927–942

DOI: 10.1016/s0997-7538(02)01246-9

Google Scholar

[5] N. Chakraborti, Genetic algorithms in material design and processing, Int. Mater. Rev. 49 (3–4) (2004) 246–260.

Google Scholar

[6] H. Naceur, Y.Q. Guo, S. Ben-Elechi Response surface methodology for design of sheet forming parameters to control springback effects. Computers and Structures 84 (2006) 1651–1663

DOI: 10.1016/j.compstruc.2006.04.005

Google Scholar

[7] M. KocË, T. Altan. An overall review of the tube hydroforming (THF) technology Journal of Materials Processing Technology 108 (2001) 384±393

DOI: 10.1016/s0924-0136(00)00830-x

Google Scholar

[8] N. Siva, P. Varma, R. Narasimhan, A.A. Luo, A.K. Sachdev, An analysis of localized necking in aluminiumalloy tubes during hydroforming using a continuum damage model, I. J. Mech. Sci. 49 (2007) 200–209

DOI: 10.1016/j.ijmecsci.2006.08.005

Google Scholar

[9] I.M. Pereiraa, G. Rubimb, O. Acselradc, P.R. Cetlin, Comparison of the experimental and the numerically predicted mechanical damage in the sheet forming of steel, J. Mater. Proc. Tech. 203 (2008) 13–18

DOI: 10.1016/j.jmatprotec.2007.09.083

Google Scholar

[10] M. Ayadi & al. Experimental and numerical studies of welded tube formability. J. Mat. Sci. Forum 614 (2009) 129–134

Google Scholar

[11] M. Ayadi & al. Experimental and Numerical Study of Hydroforming Aptitudes of Welded Tubes, International Journal of Mechatronics and Manufacturing Systems Vol.4, No1, 2011, PP 74-94

DOI: 10.1504/ijmms.2011.038001

Google Scholar

[12] van den Boogaard, A.H., Bolt, P.J., Werkhoven, R.J., 2001. Aluminum sheet forming at elevated temperatures. In: Mori, K.-I. (Ed.), Simulation of Materials Processing: Theory, Methods and Applications. A.A. Balkema, Lisse, p.819–824.

Google Scholar

[13] van den Boogaard, A.H., 2002. Thermally Enhanced Forming of Aluminum Sheet: Modeling and Experiments. Ponson & Looijen, The Netherlands.

Google Scholar

[14] anadija, M., Brnic´, J., 2004. Associative coupled thermoplasticity at finite strain with temperature dependent material parameters. Int. J. Plasticity 20 (10), 1851–1874.

DOI: 10.1016/j.ijplas.2003.11.016

Google Scholar

[15] Abedrabbo, N., Pourboghrat, F., Carsley, J., 2005a. Forming of aluminum alloys at elevated temperatures. Part 2: Numerical modeling and experimental verification. Int. J. Plasticity.

DOI: 10.1016/j.ijplas.2005.03.006

Google Scholar

[16] Nader Abedrabbo a, Farhang Pourboghrat a,, John Carsley b. Forming of aluminum alloys at elevated temperatures – Part 1: Material characterization, International Journal of Plasticity 22 (2006) 314–341

DOI: 10.1016/j.ijplas.2005.03.005

Google Scholar

[17] W. Shen & al. An anisotropic damage-based plastic yield criterion and its application to analysis of metal forming process. International Journal of Mechanical Sciences 47 (2005) 1897–(1922)

DOI: 10.1016/j.ijmecsci.2005.07.007

Google Scholar

[18] H.D. Manesh, A.K. Taheri . Bond strength and formability of an aluminum-clad steel sheet Journal of Alloys and Compounds 361 (2003) 138–143

DOI: 10.1016/s0925-8388(03)00392-x

Google Scholar

[19] Y. Chino et al. Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes Materials Science and Engineering A 473 (2008) 195–200

DOI: 10.1016/j.msea.2007.05.109

Google Scholar

[20] U. Reisgen et al. Uni- and bi-axial deformation behavior of laser welded advanced high strength steel sheets Journal of Materials Processing Technology 210 (2010) 2188–2196

DOI: 10.1016/j.jmatprotec.2010.08.003

Google Scholar

[21] M. Ayadi, M.A Rezgui , A. Cherouat, F. Slimani et T. M. Nasri. Contribution à la modélisation Expérimentale et Numérique des Instabilités Plastiques en Hydroformage des Tôles Minces, Mécanique & Industries Vol.10 (2009) pp : 503-519, EDP Sciences

DOI: 10.1051/meca/2010009

Google Scholar