Effects of the Polypyrrole/Silica on the Output Force of Ionic Polymer-Metal Composite

Article Preview

Abstract:

In this paper, a polypyrrole (PPy)/SiO2 composite filler prepared via in situ polymerization of pyrrole (Py) on SiO2 particles was incorporated into Nafion to improve the performance of ionic polymer-metal composite (IPMC) actuators. A transmission electron microscope (TEM) was used to observe the morphology of the prepared PPy/SiO2. IPMC with 1% and 2% PPy/SiO2 was synthesized, and the elastic modulus, the electric current, the blocking force and the water retention ability were measured on the test apparatus. Results showed that IPMC with 1% PPy/SiO2 composite, synthesized with 0.5ml Py, exhibited the best mechanical property. Compared with the pure Nafion-IPMC, the blocking force of PPy/SiO2/Nafion-IPMC with the optimized filler content (34.68 mN) at the sinusoidal voltage of 3 V and 0.1Hz was 2.3 times higher. Such significantly improved performance was attributed to the PPy’s redox reaction, which facilitates the ion transport in IPMC. Furthermore, the reasonable amount of the PPy and PPy/SiO2 plays an important role in fabricating the homogeneously distributed PPy/SiO2/Nafion membrane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

560-565

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. J. Kim, M. Shahinpoor: Smart Mater. Struct. Vol. 10 (2001), p.819

Google Scholar

[2] Y. Bar-Cohen, S. Leary, M. Shahinpoor, et al: Proc. of SPIE Vol. 3669 (1999), p.51

Google Scholar

[3] W. Zhang, S. X. Guo, K. Asaka: Int. J. Autom. Comp. Vol. 4 (2006), p.358

Google Scholar

[4] B. Kim, J. Ryu, Y. Jeong, et al: Proceedings of the 2003 IEEE International Conference on Robotics & Automation (2003), p.2940

Google Scholar

[5] S. W. Yeom, I. K. Oh: Smart Mater. Struct. Vol. 18 (2009), p.085002

Google Scholar

[6] M. Yu, Y. X. Li, Q. S. He, L. L. Song, Z. D. Dai: Proc. of SPIE Vol. 7976 (2011), p.23.

Google Scholar

[7] G. H. Feng, J. W. Tsai: Biomed. Microdevices Vol. 13 (2011), p.169

Google Scholar

[8] M. D. Bennett, D. J. Leo: Sens. Actuators A Vol. 115 (2004), p.79

Google Scholar

[9] F. Vidal, C. Plesse, D. Teyssié, et al : Synth. Met. Vol. 142 (2004), p.287

Google Scholar

[10] M. Shahinpoor, K. J. Kim: Sens. Actuators A Vol. 3163 (2002), 8pp

Google Scholar

[11] C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. K. Lin, and T. C. Wu: Sens. Actuators B Vol. 117 (2006), p.367

Google Scholar

[12] V. K. Nguyen, Y. Yoo: Sens Actuators B Vol. 123 (2007), p.183

Google Scholar

[13] V. K. Nguyen, J. W. Lee, Y. Yoo: Sens Actuators B Vol. 120 (2007), p.529

Google Scholar

[14] J. W. Lee, J. H. Kim: Macromol. Res. Vol. 17 (2009), p.1032

Google Scholar

[15] Q. S. He, M. Yu, Y. X. Li, Y. Ding, D. J. Guo, Z. D. Dai: J. Bionic Eng. Vol. 9 (2012), p.75

Google Scholar

[16] M. Yu, Q. S. He, Y. Ding, D. J. Guo, J. B. Li, Z. D. Dai: For Chinese Sci. Bull. Vol. 19 (2011), p. (2061)

Google Scholar

[17] B. Kim, B. M. Kim, J. Ryu, I. H. Oh, S. K. Lee, S. E. Cha, J. Pak: Proc. of SPIE Vol. 5051 (2003), p.486

Google Scholar