The Development Situation of Material Based on Dental Implant

Article Preview

Abstract:

This paper make a review of some researches, including material selection and performance, surface treatment,manufacturing technology,biocompatibility. Meanwhile, it points out that the development potential of the dental implant materials and its prospects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

541-548

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bai Liwen. The effect of heart cerebrovascular disease psychological factors on the oral cavity repair for old people[J]. Chinese Journal of Integrative Medicine on Cardio-/Cerebrovascular Disease, 2007,5(05): 453-454.

Google Scholar

[2] Liu baolin.The development of implant dentistry[J].Journal of Oral and Maxillofacial Surgery, 2001,11(Supplement):3.

Google Scholar

[3] 4][5] Xu Junwu. Prosthetic Dentistry. BeiJing: Beijing:People's Medical Publishing House, 2000: 57, 85, 204-206.

Google Scholar

[6] Kirsch A,et al.The IMZ end osseous two-phase implant system:a complete oral Rehabilitation treatment concept. Oral Implant,1986, 12:556.

Google Scholar

[7] Sutter F,Schoeder A,Buser D. The new concept of ITI Hollow cylinder and Hollow screw impla -nts:Part1,Engineering and design.Oral Maxillofaccial Implants. 1998,3:161.

Google Scholar

[8] Albrekresson T,Becker B,Hiquchi,et al.Failure of core-vent implants,A retrieval analysis of 19 hollow basket implant.Clinical Materials.1992,10(4):219-240.

DOI: 10.1016/0267-6605(92)90014-k

Google Scholar

[9] Lin Ye.Chinese oral development problems that urgently need to be solved.Chinese Journal of Oral Implantology. 2012,12,45(12):705-707.

Google Scholar

[10] Lin Ye.Chinese oral planting learn the current situation of the development and thinking. Chine -se Journal of Oral Implantology. 2007,11,42(11): 641-645.

Google Scholar

[11] Liu Baolin.Chinese oral planting science development and the forecast. Chinese Journal of Oral Implantology. 2001,9,36(5):324.

Google Scholar

[12] J C WATAHA.Materials for end osseous dental implant. Journal of Oral Rehab.1996,23:79-90.

Google Scholar

[13] JG.Ironside and M.V. Swain. Ceramics in Dental Restoration-Review and Critical Issues Journ -al of the Australasian Ceramic Society. 1998,34(2)18-91.

Google Scholar

[14] Guo Tianwen. Theory and Technic of Casting for Titanium[M]. Beijing: World Books Publishi -ng Company, 1997: 1-7.

Google Scholar

[15] Bridgeman J T, Maker V A, Hummel S K et al. Comparison of Titanium and Cobalt-chrommiu m Removable Partial Denture Clasps[J]. J Prosthet Dent, 1997, 78: 187-193

DOI: 10.1016/s0022-3913(97)70124-0

Google Scholar

[16] Wakabayashi N, Ai M. A short-term Clinical Follow-up Study of Superplastic Titanium Alloy for Major Connectors of Removable Partial Dentures[J]. J Prosthet Dent, 1997, 77:583-587

DOI: 10.1016/s0022-3913(97)70099-4

Google Scholar

[17] Wang Dalin, Xu Zhongming. The State of Art on Research and Application of Dental Alloy Materials[J]. Special Casting & Nonferrous Alloys, 1998, (3): 42-44

Google Scholar

[18] Yuan XJ, Sheng GM, Qin B, Huang WZ, Zhou B. Impulse pressuring diffusion bonding of titanium alloy to stainless steel. Mater Charact 2008;59:930-6.

DOI: 10.1016/j.matchar.2007.08.003

Google Scholar

[19] Chunxiang C, BaoMin H, Lichen Z, Shuangjin L. Titanium alloy production technology, marke -t prospects and industry development. Mater Des 2011;32:1684-1691.

Google Scholar

[20] Zeng Z, Zhang Y, Jonsson S. Deformation behaviour of commercially pure titanium during simple hot compression. Mater Des 2009; 30:3105-11.

DOI: 10.1016/j.matdes.2008.12.002

Google Scholar

[21] Atasoy E, Kahraman N. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater Charact 2006;59:1481-90.

DOI: 10.1016/j.matchar.2008.01.015

Google Scholar

[22] Miguel A. Custom-made laser-welded titanium implant prosthetic abutment. J Prosthet Dent 2005;94:401-3.

DOI: 10.1016/j.prosdent.2005.06.004

Google Scholar

[23] TANINO F, HAYAKAWA I, HIRANO S, et al. Finite element analysis of stress-breaking attach -ments on maxillary implant-retained overdentures[J]. Int J Prosthodont,2007,20(2):193-198.

Google Scholar

[24] MEIJER G J,CUNE M S,VANDOORE M.A comparative study of flexible (polyactive versus rigid hydroxyapatite)permu-cosal dental implants:clinical aspect[J].J oral Rehabil, 1997,24(2):

DOI: 10.1111/j.1365-2842.1997.tb00300.x

Google Scholar

[25] Liao Xiangling. The research and development of biological activity . Chinese Journal of or -al Implantology,1999,6,4(2):90-93.

Google Scholar

[26] He Junlan. Protection-Stuck-implant and Manufacturing . 2001:231-233.

Google Scholar

[27] Jack E. Lemons, PhD. Dental implant biomaterials. JADA, Vol 121.Dec, 1990:716-719.

Google Scholar

[28] K rutha J P, Froyenb L, V aerenbergha J V an, et al. Selective laser melting of iron-based powd -er Journal of Materials Processing Technology, 2004, 149: 616-622.

Google Scholar

[29] N.K. Tolochko, T. Laoui, Y.V. Khlopkov, S.E. Mozzharov, V.I. Titov, M.B. Ignatiev,Rapid Prot- otyping J. 6 (2000) 155.

DOI: 10.1108/13552540010337029

Google Scholar

[30] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, J. Mater. Process. Technol. 111 (1 (1-3) (2001) 210.

Google Scholar

[31] Hollander D., Wirtz Tobias, Walter Matthias, et al. Development of Individual Three-Dimensio nal Three-Dimensional Bone Substitutes Using "Selective Laser Melting". European Journal of Trauma, 2003, 29(4):228-234.

DOI: 10.1007/s00068-003-1332-2

Google Scholar

[32] Detlef Kochan, Chua Chee Kai, Du Zhaohui. Rapid prototyping issues in the 21st century. Computers in Industry, 1999, 39(1): 3-10.

DOI: 10.1016/s0166-3615(98)00125-0

Google Scholar

[33] A. Rosochowski, A. Matuszak. Rapid tooling: the state of the art. Journal of Materials Processing Technology, 2000, 106(1-3): 191~198.

DOI: 10.1016/s0924-0136(00)00613-0

Google Scholar

[34] B. Wiedemann, H.A. Jantzen. Strategies and applications for rapid product and process development in Daimler-Benz AG. Computers in Industry, 1999, 39(1):11-25.

DOI: 10.1016/s0166-3615(98)00126-2

Google Scholar

[35] Wang Yungan. Rapid prototyping technology[M]. WuHan: :Huazhong University of Science and Technology Press, 1999. 8-23.

Google Scholar

[36] Xue Yan, P Gu. A review of rapid prototyping technologies and systems.Computer-Aided Design, 1996, 28(4): 307-318.

DOI: 10.1016/0010-4485(95)00035-6

Google Scholar

[37] D.T. Pham, R.S Gault. A comparison of rapid prototyping technologies.International Journal of Machine Tools and Manufacture, 1998, 38(10-11): 1257-1287.

DOI: 10.1016/s0890-6955(97)00137-5

Google Scholar

[38] Jeng-Ywan Jeng, Ming-Ching Lin. Mold fabrication and modification using hybrid processes of selective laser cladding and milling. Journal of Materials Processing Technology, 2001, 110(1): 98~103.

DOI: 10.1016/s0924-0136(00)00850-5

Google Scholar

[39] Wermerherg A, Albrektsson T, Andersson B, etal. A histomorphometric and removal torque study of screw-shaped titanium implant with three different surface topographies. Clin Oral Implant Res, 1995,6(1):24-30.

DOI: 10.1034/j.1600-0501.1995.060103.x

Google Scholar

[40] Grizon F, Aguado E, Hure G, et al, Enhanced bone integration of implants with Increased surface roughness: a long term study in the sheep.J dent,2002,30(5-6):195-203.

DOI: 10.1016/s0300-5712(02)00018-0

Google Scholar

[41] Kuo-Yung Hung a, Sung-Cheng Lo,et al. Titanium surface modified by hydroxyapatite coating for dental implants[J]. Surface & Coatings Technology. 2012,:9.

Google Scholar

[42] S.J. Ferguson, N. Broggini, M. Wieland, M. de Wild, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, D. Buser, J. Biomed. Mater. Res. Part A 24 (2006) 291.

DOI: 10.1002/jbm.a.30678

Google Scholar

[43] B. Grosgogeat, L. Reclaru, M. Lissac, F. Dalard, Biomaterials 20 (1991) 933.

Google Scholar

[44] R.B. Heimann, Surf. Coat. Technol. 201 (2006) 2012.

Google Scholar

[45] E. Fournier1, C. Passirani, C.N. Montero-Menei, J.P. Benoit. Biocompatibility of implantable synthetic polymeric drug carriers:focus on brain biocompatibility. Biomaterials 24 (2003) 3311-3331.

DOI: 10.1016/s0142-9612(03)00161-3

Google Scholar

[46] Gentile FT, Doherty EJ, Rein DH, Shoichet MS, Winn SR. Polymer science for macroencapsul-ation of cells for central nervous system transplantation. React Polym 1995;25:207-27.

DOI: 10.1016/0923-1137(94)00097-o

Google Scholar

[47] Sieminski AL, Gooch KJ. Biomaterial–microvasculature interactions. Biomaterials 2000;21: :2233-41.

DOI: 10.1016/s0142-9612(00)00149-6

Google Scholar

[48] Rihova B. Immunocompatibility and biocompatibility of cell delivery systems. Adv Drug Deli -very Rev 2000;42:65-80.

Google Scholar

[49] Babensee JE, Anderson JM, McIntire LV, Mikos AG. Host response to tissue engineered devices. Adv Drug Delivery Rev 1998;33: 111-39.

DOI: 10.1016/s0169-409x(98)00023-4

Google Scholar

[50] Puleo DA, Nanci A. understanding and controlling the bone-implant interface. Biomaterials, 1999,20(12):2311.

DOI: 10.1016/s0142-9612(99)00160-x

Google Scholar

[51] Canan Hekimoglu DDS. Analysis of strain around endosseous dental implants opposing natural teeth or implants. The Journal of Prosthetic Dentistry, 2004 Nov,92(5):441-446.

DOI: 10.1016/j.prosdent.2004.07.023

Google Scholar